hashiruAI / src /manager /agent_manager.py
helloparthshah's picture
Fixing tool deletion
fde43e7
raw
history blame
11.6 kB
from abc import ABC, abstractmethod
from typing import Dict, Type, Any, Optional, Tuple
import os
import json
import ollama
from src.manager.utils.singleton import singleton
from src.manager.utils.streamlit_interface import output_assistant_response
from google import genai
from google.genai import types
from google.genai.types import *
import os
from dotenv import load_dotenv
from src.manager.budget_manager import BudgetManager
MODEL_PATH = "./src/models/"
MODEL_FILE_PATH = "./src/models/models.json"
class Agent(ABC):
def __init__(self, agent_name: str, base_model: str, system_prompt: str, creation_cost: str, invoke_cost: str):
self.agent_name = agent_name
self.base_model = base_model
self.system_prompt = system_prompt
self.creation_cost = creation_cost
self.invoke_cost = invoke_cost
self.create_model()
@abstractmethod
def create_model(self) -> None:
"""Create and Initialize agent"""
pass
@abstractmethod
def ask_agent(self, prompt: str) -> str:
"""ask agent a question"""
pass
@abstractmethod
def delete_agent(self) ->None:
"""delete agent"""
pass
def get_costs(self):
return {
"create_cost": self.creation_cost,
"invoke_cost": self.invoke_cost
}
class OllamaAgent(Agent):
def create_model(self):
ollama_response = ollama.create(
model = self.agent_name,
from_ = self.base_model,
system = self.system_prompt,
stream = False
)
def ask_agent(self, prompt):
output_assistant_response(f"Asked Agent {self.agent_name} a question")
agent_response = ollama.chat(
model=self.agent_name,
messages=[{"role": "user", "content": prompt}],
)
output_assistant_response(f"Agent {self.agent_name} answered with {agent_response.message.content}")
return agent_response.message.content
def delete_agent(self):
ollama.delete(self.agent_name)
class GeminiAgent(Agent):
def __init__(self, agent_name: str, base_model: str, system_prompt: str, creation_cost: str, invoke_cost: str):
load_dotenv()
self.api_key = os.getenv("GEMINI_KEY")
if not self.api_key:
raise ValueError("Google API key is required for Gemini models. Set GOOGLE_API_KEY environment variable or pass api_key parameter.")
# Initialize the Gemini API
self.client = genai.Client(api_key=self.api_key)
# Call parent constructor after API setup
super().__init__(agent_name, base_model, system_prompt, creation_cost, invoke_cost)
def create_model(self):
self.messages = []
def ask_agent(self, prompt):
response = self.client.models.generate_content(
model=self.base_model,
contents=prompt,
config=types.GenerateContentConfig(
system_instruction=self.system_prompt,
)
)
return response.text
def delete_agent(self):
self.messages = []
@singleton
class AgentManager():
budget_manager: BudgetManager = BudgetManager()
def __init__(self):
self._agents: Dict[str, Agent] = {}
self._agent_types ={
"ollama": OllamaAgent,
"gemini": GeminiAgent
}
self._load_agents()
def create_agent(self, agent_name: str,
base_model: str, system_prompt: str,
description: str = "", create_cost: float = 0,
invoke_cost: float = 0,
**additional_params) -> Tuple[Agent, int]:
if agent_name in self._agents:
raise ValueError(f"Agent {agent_name} already exists")
self._agents[agent_name] = self.create_agent_class(
agent_name,
base_model,
system_prompt,
description=description,
create_cost=create_cost,
invoke_cost=invoke_cost,
**additional_params # For any future parameters we might want to add
)
#save agent to file
self._save_agent(
agent_name,
base_model,
system_prompt,
description=description,
create_cost=create_cost,
invoke_cost=invoke_cost,
**additional_params # For any future parameters we might want to add
)
return (self._agents[agent_name], self.budget_manager.get_current_remaining_budget())
def validate_budget(self, amount: float) -> None:
if not self.budget_manager.can_spend(amount):
raise ValueError(f"Do not have enough budget to create the tool. "
+f"Creating the tool costs {amount} but only {self.budget_manager.get_current_remaining_budget()} is remaining")
def create_agent_class(self, agent_name: str, base_model: str, system_prompt: str, description: str = "", create_cost: float = 0, invoke_cost: float = 0,
**additional_params) -> Agent:
agent_type = self._get_agent_type(base_model)
agent_class = self._agent_types.get(agent_type)
if not agent_class:
raise ValueError(f"Unsupported base model {base_model}")
created_agent = agent_class(agent_name, base_model, system_prompt, create_cost,invoke_cost)
self.validate_budget(create_cost)
self.budget_manager.add_to_expense(create_cost)
# create agent
return created_agent
def get_agent(self, agent_name: str) -> Agent:
"""Get existing agent by name"""
if agent_name not in self._agents:
raise ValueError(f"Agent {agent_name} does not exists")
return self._agents[agent_name]
def list_agents(self) -> dict:
"""Return agent information (name, description, costs)"""
try:
if os.path.exists(MODEL_FILE_PATH):
with open(MODEL_FILE_PATH, "r", encoding="utf8") as f:
full_models = json.loads(f.read())
# Create a simplified version with only the description and costs
simplified_agents = {}
for name, data in full_models.items():
simplified_agents[name] = {
"description": data.get("description", ""),
"create_cost": data.get("create_cost", 0),
"invoke_cost": data.get("invoke_cost", 0),
"base_model": data.get("base_model", ""),
}
return simplified_agents
else:
return {}
except Exception as e:
output_assistant_response(f"Error listing agents: {e}")
return {}
def delete_agent(self, agent_name: str) -> int:
agent = self.get_agent(agent_name)
self.budget_manager.remove_from_expense(agent.creation_cost)
agent.delete_agent()
del self._agents[agent_name]
try:
if os.path.exists(MODEL_FILE_PATH):
with open(MODEL_FILE_PATH, "r", encoding="utf8") as f:
models = json.loads(f.read())
del models[agent_name]
with open(MODEL_FILE_PATH, "w", encoding="utf8") as f:
f.write(json.dumps(models, indent=4))
except Exception as e:
output_assistant_response(f"Error deleting agent: {e}")
return self.budget_manager.get_current_remaining_budget()
def ask_agent(self, agent_name: str, prompt: str) -> Tuple[str,int]:
agent = self.get_agent(agent_name)
self.validate_budget(agent.invoke_cost)
response = agent.ask_agent(prompt)
return (response, self.budget_manager.get_current_remaining_budget())
def _save_agent(self, agent_name: str, base_model: str, system_prompt: str,
description: str = "", create_cost: float = 0, invoke_cost: float = 0,
**additional_params) -> None:
"""Save a single agent to the models.json file"""
try:
# Ensure the directory exists
os.makedirs(MODEL_PATH, exist_ok=True)
# Read existing models file or create empty dict if it doesn't exist
try:
with open(MODEL_FILE_PATH, "r", encoding="utf8") as f:
models = json.loads(f.read())
except (FileNotFoundError, json.JSONDecodeError):
models = {}
# Update the models dict with the new agent
models[agent_name] = {
"base_model": base_model,
"description": description,
"system_prompt": system_prompt,
"create_cost": create_cost,
"invoke_cost": invoke_cost,
}
# Add any additional parameters that were passed
for key, value in additional_params.items():
models[agent_name][key] = value
# Write the updated models back to the file
with open(MODEL_FILE_PATH, "w", encoding="utf8") as f:
f.write(json.dumps(models, indent=4))
except Exception as e:
output_assistant_response(f"Error saving agent {agent_name}: {e}")
def _get_agent_type(self, base_model)->str:
if base_model == "llama3.2":
return "ollama"
elif base_model == "mistral":
return "ollama"
elif "gemini" in base_model:
return "gemini"
else:
return "unknown"
def _load_agents(self) -> None:
"""Load agent configurations from disk"""
try:
if not os.path.exists(MODEL_FILE_PATH):
return
with open(MODEL_FILE_PATH, "r", encoding="utf8") as f:
models = json.loads(f.read())
for name, data in models.items():
if name in self._agents:
continue
base_model = data["base_model"]
system_prompt = data["system_prompt"]
creation_cost = data["create_cost"]
invoke_cost = data["invoke_cost"]
model_type = self._get_agent_type(base_model)
manager_class = self._agent_types.get(model_type)
if manager_class:
# Create the agent with the appropriate manager class
self._agents[name] = self.create_agent_class(
name,
base_model,
system_prompt,
description=data.get("description", ""),
create_cost=creation_cost,
invoke_cost=invoke_cost,
**data.get("additional_params", {})
)
self._agents[name] = manager_class(
name,
base_model,
system_prompt,
creation_cost,
invoke_cost
)
except Exception as e:
output_assistant_response(f"Error loading agents: {e}")