File size: 23,383 Bytes
e0d574f 98d31e7 e0d574f fcdfb63 2f85c93 e5d4b0f e0964c2 e5d4b0f 2f85c93 98d31e7 fde43e7 231c049 e0d574f 231c049 bf722a2 eb1e30c e0d574f bf722a2 eb1e30c e0d574f 231c049 e0d574f 231c049 e0d574f 231c049 e0d574f 231c049 e0d574f 231c049 fcb1a95 bf722a2 eb1e30c fcb1a95 231c049 e0d574f 231c049 e0d574f 231c049 e0d574f 231c049 e0d574f 434b328 e0d574f 231c049 e0d574f 231c049 e0d574f 231c049 e5d4b0f 231c049 bf722a2 eb1e30c e5d4b0f 231c049 e5d4b0f 657847e 231c049 e5d4b0f 231c049 bf722a2 eb1e30c e5d4b0f 231c049 e5d4b0f 657847e e5d4b0f 231c049 e5d4b0f e0964c2 231c049 e0964c2 231c049 e0964c2 1b3d55c eb1e30c e0964c2 1b3d55c eb1e30c 1b3d55c e0964c2 1b3d55c e0964c2 1b3d55c e0964c2 1b3d55c e0964c2 1b3d55c e0964c2 1b3d55c e0964c2 1b3d55c e0964c2 1b3d55c e0964c2 1b3d55c 231c049 728be71 fcdfb63 728be71 fcdfb63 728be71 fcdfb63 728be71 fcdfb63 728be71 fcdfb63 728be71 fcdfb63 728be71 e0d574f 6900003 231c049 e0d574f 6900003 231c049 e5d4b0f e0964c2 728be71 e0d574f 231c049 e0d574f 231c049 bf722a2 eb1e30c 231c049 e0d574f 231c049 6900003 231c049 6900003 bf722a2 eb1e30c 6900003 231c049 e0d574f 231c049 e0d574f bf722a2 eb1e30c e0d574f 231c049 bf722a2 231c049 bf722a2 231c049 bf722a2 231c049 bf722a2 231c049 bf722a2 eb1e30c 231c049 6900003 231c049 6900003 231c049 bf722a2 eb1e30c 728be71 231c049 bf722a2 231c049 bf722a2 6900003 60b4d0f 6900003 e0d574f fcb1a95 e0d574f 231c049 e0d574f fde43e7 e0d574f 231c049 e0d574f bf722a2 60b4d0f e0d574f 434b328 e0d574f 231c049 98d31e7 231c049 6900003 231c049 e0d574f fde43e7 e0d574f 231c049 e0d574f fde43e7 e0d574f 434b328 231c049 bf722a2 231c049 a2ebc4b 231c049 657847e a2ebc4b 231c049 a2ebc4b 231c049 a2ebc4b 6900003 231c049 eb1e30c 231c049 bf722a2 231c049 bf722a2 eb1e30c e0d574f fde43e7 231c049 e0d574f fde43e7 e0d574f 231c049 e0d574f bf722a2 eb1e30c e0d574f 231c049 e0d574f 231c049 e0d574f fde43e7 e0d574f 231c049 e0d574f 434b328 e0d574f 231c049 fcb1a95 e0d574f 2c0c391 e5d4b0f e0964c2 728be71 e0d574f 231c049 728be71 e0d574f fde43e7 e0d574f 231c049 fde43e7 e0d574f 231c049 e0d574f fcb1a95 e0d574f bf722a2 eb1e30c fcb1a95 231c049 e0d574f 6900003 231c049 6900003 bf722a2 eb1e30c 6900003 e0d574f 231c049 e0d574f fcb1a95 bf722a2 eb1e30c e0d574f 231c049 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 |
from abc import ABC, abstractmethod
from typing import Dict, Type, Any, Optional, Tuple
import os
import json
import ollama
from openai import OpenAI
from src.manager.utils.singleton import singleton
from src.manager.utils.streamlit_interface import output_assistant_response
from google import genai
from google.genai import types
from google.genai.types import *
from groq import Groq
import os
from dotenv import load_dotenv
from src.manager.budget_manager import BudgetManager
MODEL_PATH = "./src/models/"
MODEL_FILE_PATH = "./src/models/models.json"
class Agent(ABC):
def __init__(self, agent_name: str,
base_model: str,
system_prompt: str,
create_resource_cost: int,
invoke_resource_cost: int,
create_expense_cost: int = 0,
invoke_expense_cost: int = 0,
output_expense_cost: int = 0):
self.agent_name = agent_name
self.base_model = base_model
self.system_prompt = system_prompt
self.create_resource_cost = create_resource_cost
self.invoke_resource_cost = invoke_resource_cost
self.create_expense_cost = create_expense_cost
self.invoke_expense_cost = invoke_expense_cost
self.output_expense_cost = output_expense_cost
self.create_model()
@abstractmethod
def create_model(self) -> None:
"""Create and Initialize agent"""
pass
@abstractmethod
def ask_agent(self, prompt: str) -> str:
"""ask agent a question"""
pass
@abstractmethod
def delete_agent(self) -> None:
"""delete agent"""
pass
@abstractmethod
def get_type(self) -> None:
"""get agent type"""
pass
def get_costs(self):
return {
"create_resource_cost": self.create_resource_cost,
"invoke_resource_cost": self.invoke_resource_cost,
"create_expense_cost": self.create_expense_cost,
"invoke_expense_cost": self.invoke_expense_cost,
"output_expense_cost": self.output_expense_cost,
}
class OllamaAgent(Agent):
type = "local"
def create_model(self):
ollama_response = ollama.create(
model=self.agent_name,
from_=self.base_model,
system=self.system_prompt,
stream=False
)
def ask_agent(self, prompt):
output_assistant_response(f"Asked Agent {self.agent_name} a question")
agent_response = ollama.chat(
model=self.agent_name,
messages=[{"role": "user", "content": prompt}],
)
output_assistant_response(
f"Agent {self.agent_name} answered with {agent_response.message.content}")
return agent_response.message.content
def delete_agent(self):
ollama.delete(self.agent_name)
def get_type(self):
return self.type
class GeminiAgent(Agent):
type = "cloud"
def __init__(self,
agent_name: str,
base_model: str,
system_prompt: str,
create_resource_cost: int,
invoke_resource_cost: int,
create_expense_cost: int = 0,
invoke_expense_cost: int = 0,
output_expense_cost: int = 0):
load_dotenv()
self.api_key = os.getenv("GEMINI_KEY")
if not self.api_key:
raise ValueError(
"Google API key is required for Gemini models. Set GOOGLE_API_KEY environment variable or pass api_key parameter.")
# Initialize the Gemini API
self.client = genai.Client(api_key=self.api_key)
self.chat = self.client.chats.create(model=base_model)
# Call parent constructor after API setup
super().__init__(agent_name,
base_model,
system_prompt,
create_resource_cost,
invoke_resource_cost,
create_expense_cost,
invoke_expense_cost,
output_expense_cost)
def create_model(self):
self.messages = []
def ask_agent(self, prompt):
response = self.chat.send_message(
message=prompt,
config=types.GenerateContentConfig(
system_instruction=self.system_prompt,
)
)
return response.text
def delete_agent(self):
self.messages = []
def get_type(self):
return self.type
class GroqAgent(Agent):
type = "cloud"
def __init__(
self,
agent_name: str,
base_model: str,
system_prompt: str,
create_resource_cost: int,
invoke_resource_cost: int,
create_expense_cost: int = 0,
invoke_expense_cost: int = 0,
output_expense_cost: int = 0
):
# Call the parent class constructor first
super().__init__(agent_name, base_model, system_prompt,
create_resource_cost, invoke_resource_cost,
create_expense_cost, invoke_expense_cost,
output_expense_cost)
# Groq-specific API client setup
api_key = os.getenv("GROQ_API_KEY")
if not api_key:
raise ValueError("GROQ_API_KEY environment variable not set. Please set it in your .env file or environment.")
self.client = Groq(api_key=api_key)
if self.base_model and "groq-" in self.base_model:
self.groq_api_model_name = self.base_model.split("groq-", 1)[1]
else:
# Fallback or error if the naming convention isn't followed.
# This ensures that if a non-prefixed model name is somehow passed,
# it might still work, or you can raise an error.
self.groq_api_model_name = self.base_model
print(f"Warning: GroqAgent base_model '{self.base_model}' does not follow 'groq-' prefix convention.")
def create_model(self) -> None:
"""
Create and Initialize agent.
For Groq, models are pre-existing on their cloud.
This method is called by Agent's __init__.
"""
pass
def ask_agent(self, prompt: str) -> str:
"""Ask agent a question"""
if not self.client:
raise ConnectionError("Groq client not initialized. Check API key and constructor.")
if not self.groq_api_model_name:
raise ValueError("Groq API model name not set. Check base_model configuration.")
messages = [
{"role": "system", "content": self.system_prompt},
{"role": "user", "content": prompt},
]
try:
response = self.client.chat.completions.create(
messages=messages,
model=self.groq_api_model_name, # Use the derived model name for Groq API
)
result = response.choices[0].message.content
return result
except Exception as e:
# Handle API errors or other exceptions during the call
print(f"Error calling Groq API: {e}")
raise # Re-raise the exception or handle it as appropriate
def delete_agent(self) -> None:
"""Delete agent"""
pass
def get_type(self) -> str: # Ensure return type hint matches Agent ABC
"""Get agent type"""
return self.type
class LambdaAgent(Agent):
type = "cloud"
def __init__(self,
agent_name: str,
base_model: str,
system_prompt: str,
create_resource_cost: int,
invoke_resource_cost: int,
create_expense_cost: int = 0,
invoke_expense_cost: int = 0,
output_expense_cost: int = 0,
api_key: str = ""):
self.lambda_url = "https://api.lambda.ai/v1"
self.api_key = api_key or os.getenv("LAMBDA_API_KEY")
self.lambda_model = base_model.split("lambda-")[1] if base_model.startswith("lambda-") else base_model
if not self.api_key:
raise ValueError("Lambda API key must be provided or set in LAMBDA_API_KEY environment variable.")
self.client = client = OpenAI(
api_key=self.api_key,
base_url=self.lambda_url,
)
super().__init__(agent_name,
base_model,
system_prompt,
create_resource_cost,
invoke_resource_cost,
create_expense_cost,
invoke_expense_cost,
output_expense_cost)
def create_model(self) -> None:
pass # Lambda already deployed
def ask_agent(self, prompt: str) -> str:
"""Ask agent a question"""
try:
response = self.client.chat.completions.create(
model=self.lambda_model,
messages=[
{"role": "system", "content": self.system_prompt},
{"role": "user", "content": prompt}
],
)
return response.choices[0].message.content
except Exception as e:
output_assistant_response(f"Error asking agent: {e}")
raise
def delete_agent(self) -> None:
pass
def get_type(self) -> str:
return self.type
@singleton
class AgentManager():
budget_manager: BudgetManager = BudgetManager()
is_creation_enabled: bool = True
is_cloud_invocation_enabled: bool = True
is_local_invocation_enabled: bool = True
def __init__(self):
self._agents: Dict[str, Agent] = {}
self._agent_types = {
"ollama": OllamaAgent,
"gemini": GeminiAgent,
"groq": GroqAgent,
"lambda": LambdaAgent,
}
self._load_agents()
def set_creation_mode(self, status: bool):
self.is_creation_enabled = status
if status:
output_assistant_response("Agent creation mode is enabled.")
else:
output_assistant_response("Agent creation mode is disabled.")
def set_cloud_invocation_mode(self, status: bool):
self.is_cloud_invocation_enabled = status
if status:
output_assistant_response("Cloud invocation mode is enabled.")
else:
output_assistant_response("Cloud invocation mode is disabled.")
def set_local_invocation_mode(self, status: bool):
self.is_local_invocation_enabled = status
if status:
output_assistant_response("Local invocation mode is enabled.")
else:
output_assistant_response("Local invocation mode is disabled.")
def create_agent(self, agent_name: str,
base_model: str, system_prompt: str,
description: str = "", create_resource_cost: float = 0,
invoke_resource_cost: float = 0,
create_expense_cost: float = 0,
invoke_expense_cost: float = 0,
output_expense_cost: float = 0,
**additional_params) -> Tuple[Agent, int]:
if not self.is_creation_enabled:
raise ValueError("Agent creation mode is disabled.")
if agent_name in self._agents:
raise ValueError(f"Agent {agent_name} already exists")
self._agents[agent_name] = self.create_agent_class(
agent_name,
base_model,
system_prompt,
description=description,
create_resource_cost=create_resource_cost,
invoke_resource_cost=invoke_resource_cost,
create_expense_cost=create_expense_cost,
invoke_expense_cost=invoke_expense_cost,
output_expense_cost=output_expense_cost,
**additional_params # For any future parameters we might want to add
)
# save agent to file
self._save_agent(
agent_name,
base_model,
system_prompt,
description=description,
create_resource_cost=create_resource_cost,
invoke_resource_cost=invoke_resource_cost,
create_expense_cost=create_expense_cost,
invoke_expense_cost=invoke_expense_cost,
output_expense_cost=output_expense_cost,
**additional_params # For any future parameters we might want to add
)
return (self._agents[agent_name],
self.budget_manager.get_current_remaining_resource_budget(),
self.budget_manager.get_current_remaining_expense_budget())
def validate_budget(self,
resource_cost: float = 0,
expense_cost: float = 0) -> None:
if not self.budget_manager.can_spend_resource(resource_cost):
raise ValueError(f"Do not have enough resource budget to create/use the agent. "
+ f"Creating/Using the agent costs {resource_cost} but only {self.budget_manager.get_current_remaining_resource_budget()} is remaining")
if not self.budget_manager.can_spend_expense(expense_cost):
raise ValueError(f"Do not have enough expense budget to create/use the agent. "
+ f"Creating/Using the agent costs {expense_cost} but only {self.budget_manager.get_current_remaining_expense_budget()} is remaining")
def create_agent_class(self,
agent_name: str,
base_model: str,
system_prompt: str,
description: str = "",
create_resource_cost: float = 0,
invoke_resource_cost: float = 0,
create_expense_cost: float = 0,
invoke_expense_cost: float = 0,
output_expense_cost: float = 0,
**additional_params) -> Agent:
agent_type = self._get_agent_type(base_model)
agent_class = self._agent_types.get(agent_type)
if not agent_class:
raise ValueError(f"Unsupported base model {base_model}")
created_agent = agent_class(agent_name,
base_model,
system_prompt,
create_resource_cost,
invoke_resource_cost,
create_expense_cost,
invoke_expense_cost,
output_expense_cost,
**additional_params)
self.validate_budget(create_resource_cost,
create_expense_cost)
self.budget_manager.add_to_resource_budget(create_resource_cost)
self.budget_manager.add_to_expense_budget(create_expense_cost)
# create agent
return created_agent
def get_agent(self, agent_name: str) -> Agent:
"""Get existing agent by name"""
if agent_name not in self._agents:
raise ValueError(f"Agent {agent_name} does not exists")
return self._agents[agent_name]
def list_agents(self) -> dict:
"""Return agent information (name, description, costs)"""
try:
if os.path.exists(MODEL_FILE_PATH):
with open(MODEL_FILE_PATH, "r", encoding="utf8") as f:
full_models = json.loads(f.read())
# Create a simplified version with only the description and costs
simplified_agents = {}
for name, data in full_models.items():
simplified_agents[name] = {
"description": data.get("description", ""),
"create_resource_cost": data.get("create_resource_cost", 0),
"invoke_resource_cost": data.get("invoke_resource_cost", 0),
"create_expense_cost": data.get("create_expense_cost", 0),
"invoke_expense_cost": data.get("invoke_expense_cost", 0),
"base_model": data.get("base_model", ""),
}
return simplified_agents
else:
return {}
except Exception as e:
output_assistant_response(f"Error listing agents: {e}")
return {}
def delete_agent(self, agent_name: str) -> int:
agent: Agent = self.get_agent(agent_name)
self.budget_manager.remove_from_resource_expense(
agent.create_resource_cost)
agent.delete_agent()
del self._agents[agent_name]
try:
if os.path.exists(MODEL_FILE_PATH):
with open(MODEL_FILE_PATH, "r", encoding="utf8") as f:
models = json.loads(f.read())
del models[agent_name]
with open(MODEL_FILE_PATH, "w", encoding="utf8") as f:
f.write(json.dumps(models, indent=4))
except Exception as e:
output_assistant_response(f"Error deleting agent: {e}")
return (self.budget_manager.get_current_remaining_resource_budget(),
self.budget_manager.get_current_remaining_expense_budget())
def ask_agent(self, agent_name: str, prompt: str) -> Tuple[str, int]:
agent: Agent = self.get_agent(agent_name)
print(agent.get_type())
print(agent_name)
print(self.is_local_invocation_enabled,
self.is_cloud_invocation_enabled)
if not self.is_local_invocation_enabled and agent.get_type() == "local":
raise ValueError("Local invocation mode is disabled.")
if not self.is_cloud_invocation_enabled and agent.get_type() == "cloud":
raise ValueError("Cloud invocation mode is disabled.")
n_tokens = len(prompt.split())/1000000
self.validate_budget(agent.invoke_resource_cost,
agent.invoke_expense_cost*n_tokens)
self.budget_manager.add_to_expense_budget(
agent.invoke_expense_cost*n_tokens)
response = agent.ask_agent(prompt)
n_tokens = len(response.split())/1000000
self.budget_manager.add_to_expense_budget(
agent.output_expense_cost*n_tokens)
return (response,
self.budget_manager.get_current_remaining_resource_budget(),
self.budget_manager.get_current_remaining_expense_budget())
def _save_agent(self,
agent_name: str,
base_model: str,
system_prompt: str,
description: str = "",
create_resource_cost: float = 0,
invoke_resource_cost: float = 0,
create_expense_cost: float = 0,
invoke_expense_cost: float = 0,
output_expense_cost: float = 0,
**additional_params) -> None:
"""Save a single agent to the models.json file"""
try:
# Ensure the directory exists
os.makedirs(MODEL_PATH, exist_ok=True)
# Read existing models file or create empty dict if it doesn't exist
try:
with open(MODEL_FILE_PATH, "r", encoding="utf8") as f:
models = json.loads(f.read())
except (FileNotFoundError, json.JSONDecodeError):
models = {}
# Update the models dict with the new agent
models[agent_name] = {
"base_model": base_model,
"description": description,
"system_prompt": system_prompt,
"create_resource_cost": create_resource_cost,
"invoke_resource_cost": invoke_resource_cost,
"create_expense_cost": create_expense_cost,
"invoke_expense_cost": invoke_expense_cost,
"output_expense_cost": output_expense_cost,
}
# Add any additional parameters that were passed
for key, value in additional_params.items():
models[agent_name][key] = value
# Write the updated models back to the file
with open(MODEL_FILE_PATH, "w", encoding="utf8") as f:
f.write(json.dumps(models, indent=4))
except Exception as e:
output_assistant_response(f"Error saving agent {agent_name}: {e}")
def _get_agent_type(self, base_model) -> str:
if base_model == "llama3.2":
return "ollama"
elif base_model == "mistral":
return "ollama"
elif base_model == "deepseek-r1":
return "ollama"
elif "gemini" in base_model:
return "gemini"
elif "groq" in base_model:
return "groq"
elif base_model.startswith("lambda-"):
return "lambda"
else:
return "unknown"
def _load_agents(self) -> None:
"""Load agent configurations from disk"""
try:
if not os.path.exists(MODEL_FILE_PATH):
return
with open(MODEL_FILE_PATH, "r", encoding="utf8") as f:
models = json.loads(f.read())
for name, data in models.items():
if name in self._agents:
continue
base_model = data["base_model"]
system_prompt = data["system_prompt"]
create_resource_cost = data.get("create_resource_cost", 0)
invoke_resource_cost = data.get("invoke_resource_cost", 0)
create_expense_cost = data.get("create_expense_cost", 0)
invoke_expense_cost = data.get("invoke_expense_cost", 0)
output_expense_cost = data.get("output_expense_cost", 0)
model_type = self._get_agent_type(base_model)
manager_class = self._agent_types.get(model_type)
if manager_class:
# Create the agent with the appropriate manager class
self._agents[name] = self.create_agent_class(
name,
base_model,
system_prompt,
description=data.get("description", ""),
create_resource_cost=create_resource_cost,
invoke_resource_cost=invoke_resource_cost,
create_expense_cost=create_expense_cost,
invoke_expense_cost=invoke_expense_cost,
output_expense_cost=output_expense_cost,
**data.get("additional_params", {})
)
self._agents[name] = manager_class(
name,
base_model,
system_prompt,
create_resource_cost,
invoke_resource_cost,
create_expense_cost,
invoke_expense_cost,
output_expense_cost
)
except Exception as e:
output_assistant_response(f"Error loading agents: {e}")
|