# COPAINT TLDR: From generated Image -> Copaint PDF [![demo](data/demo.jpg)](data/demo.jpg) ## Usage and Install ``` # Install dependencies pip install torch torchvision reportlab PyPDF2 Pillow argparse gradio_pdf # Run python copaint.py --input_image data/bear.jpg --copaint_logo data/logo_copaint.jpg --outputfolder output # Using the CLI pip install --upgrade pip pip install -e . # Case 1 : generate all the presets copaint --input_image data/bear.jpg --copaint_logo data/logo_copaint.jpg --outputfolder output --use_presets True # Case 2 : provide a number of participants, the program will generate the best grid copaint --input_image data/bear.jpg --copaint_logo data/logo_copaint.jpg --outputfolder output --nparticipants 45 # Case 3 : provide the number of cells in the grid copaint --input_image data/bear.jpg --copaint_logo data/logo_copaint.jpg --outputfolder output --h_cells 3 --w_cells 4 ``` ## Build and deploy ``` # Build poetry build # Deploy poetry publish ```