import gradio as gr from diffusers import StableDiffusionPipeline import torch from PIL import Image # Load the model model_path = "gremlin97/RemoteDiff224" pipe = StableDiffusionPipeline.from_pretrained(model_path) # Fixed negative prompt fixed_negative_prompt = "weird colors, low quality, jpeg artifacts, lowres, grainy, deformed structures, blurry, opaque, low contrast, distorted details, details are low" # Function to generate images based on input text def generate_image(prompt): prompt += " , 8k, best quality, high-resolution" image = pipe(prompt=prompt, negative_prompt=fixed_negative_prompt, num_inference_steps=50, guidance_scale=7.5).images[0] return image # Create a Gradio interface with a submit button iface = gr.Interface( fn=generate_image, inputs="text", outputs=gr.Image(), # Initial placeholder for the image, title="RemoteDiff224 Image Generator", description="Stable Diffusion for Remote Sensing!", ) # Launch the Gradio interface iface.launch(share=True)