import requests import streamlit as st import streamlit.components.v1 as components def query(payload): API_URL = "https://api-inference.huggingface.co/models/symanto/sn-xlm-roberta-base-snli-mnli-anli-xnli" headers = {"Authorization": "Bearer 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"} response = requests.post(API_URL, headers=headers, json=payload) return response.json() def semanticComparativeClassification(): st.write(st.session_state.mytext) #API_URL = "https://api-inference.huggingface.co/models/Maite89/Roberta_finetuning_semantic_similarity_stsb_multi_mt" sentences = [ "Conoces Lya2", "He perdido la contraseña", "Calendario de eventos", "Cambios dobles", "Cambios simples", "Hola me estás saludando", "Adiós te despides" ] output = query({ "inputs": { "wait_for_model" : True, "source_sentence": st.session_state.mytext, "sentences": sentences }, }) index = 0 sentenceindex = -1 max = 0 for i in output: st.write(i) if i>max: sentenceindex = index index = index + 1 st.write("Hablamos de ", sentences[sentenceindex]) return output #x = st.slider('Select a value') #st.write(x, 'squared is', x * x) st.title('Reconocimiento semántico') title = st.text_input('Pregunta', '¿Conoces Lya2?', on_change=semanticComparativeClassification,key='mytext') st.write('La pregunta es ', st.session_state.mytext)