semantic_search / app.py
graredcr's picture
Update app.py
42bb16f
raw
history blame
1.15 kB
import requests
import streamlit as st
import streamlit.components.v1 as components
def semanticComparativeClassification():
#API_URL = "https://api-inference.huggingface.co/models/Maite89/Roberta_finetuning_semantic_similarity_stsb_multi_mt"
API_URL = "https://api-inference.huggingface.co/models/symanto/sn-xlm-roberta-base-snli-mnli-anli-xnli"
headers = {"Authorization": "Bearer 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"}
def query(payload):
response = requests.post(API_URL, headers=headers, json=payload)
return response.json()
output = query({
"inputs": {
"wait_for_model" : True,
"source_sentence": "Sincronizaci贸n de Lya2 con el tel茅fono",
"sentences": [
"Conoces Lya2",
"He perdido la contrase帽a. Como la recupero.",
"Que dia m谩s bonito",
"Como sincronizo el m贸bil con Lya2"
]
},
})
return output
#x = st.slider('Select a value')
#st.write(x, 'squared is', x * x)
x = semanticComparativeClassification()
for i in x:
print(i)
st.title('Uber pickups in NYC')
st.components.v1.html('sadasffas')