File size: 4,441 Bytes
1b5d55e
 
 
 
5260f7d
1b5d55e
5260f7d
 
 
 
 
 
1b5d55e
 
5260f7d
1b5d55e
 
5260f7d
1b5d55e
 
 
5260f7d
 
 
 
1b5d55e
 
 
 
 
5260f7d
1b5d55e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5260f7d
 
 
1b5d55e
 
 
 
 
 
 
 
 
 
 
5260f7d
1b5d55e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5260f7d
1b5d55e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5260f7d
1b5d55e
 
 
 
 
 
 
5260f7d
1b5d55e
 
 
 
 
 
 
 
5260f7d
1b5d55e
 
 
 
 
 
 
5260f7d
1b5d55e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import gradio as gr
import numpy as np
import random

import spaces
import torch
from pikigen import PikigenPipeline

# Trick required because it is not a native diffusers model
from diffusers.pipelines.pipeline_loading_utils import LOADABLE_CLASSES, ALL_IMPORTABLE_CLASSES
LOADABLE_CLASSES.setdefault("pikigen", {}).setdefault("DiT", []).extend(["save_pretrained", "from_pretrained"])
ALL_IMPORTABLE_CLASSES.setdefault("DiT", []).extend(["save_pretrained", "from_pretrained"])

device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "Freepik/Pikigen-test"

if torch.cuda.is_available():
    torch_dtype = torch.bfloat16
else:
    torch_dtype = torch.float32

pipe = PikigenPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
pipe.enable_model_cpu_offload()  # For less memory consumption
pipe.vae.enable_slicing()
pipe.vae.enable_tiling()

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024


@spaces.GPU
def infer(
    prompt,
    negative_prompt,
    seed,
    randomize_seed,
    width,
    height,
    guidance_scale,
    num_inference_steps,
    progress=gr.Progress(track_tqdm=True),
):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    generator = torch.Generator().manual_seed(seed)

    image = pipe(
        prompt=prompt,
        negative_prompt=negative_prompt,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        width=width,
        height=height,
        generator=generator,
    ).images[0]

    return image, seed


examples = [
    "A photorealistic 3D render of a charming, mischievous young boy with long, floppy donkey ears and a small pink pig nose",
    "A landscape photograph showing a serene mountain lake at sunset with reflections in crystal clear water",
    "A detailed digital painting of a futuristic cyberpunk city with neon lights and flying vehicles",
]

css = """
#col-container {
    margin: 0 auto;
    max-width: 640px;
}
"""

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown(" # Pikigen Text-to-Image Demo")

        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )

            run_button = gr.Button("Run", scale=0, variant="primary")

        result = gr.Image(label="Result", show_label=False)

        with gr.Accordion("Advanced Settings", open=False):
            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
                visible=True,
            )

            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )

            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )

                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )

            with gr.Row():
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=10.0,
                    step=0.1,
                    value=3.5,
                )

                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=30,
                )

        gr.Examples(examples=examples, inputs=[prompt])
    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[
            prompt,
            negative_prompt,
            seed,
            randomize_seed,
            width,
            height,
            guidance_scale,
            num_inference_steps,
        ],
        outputs=[result, seed],
    )

if __name__ == "__main__":
    demo.launch()