Spaces:
Runtime error
Runtime error
File size: 4,441 Bytes
1b5d55e 5260f7d 1b5d55e 5260f7d 1b5d55e 5260f7d 1b5d55e 5260f7d 1b5d55e 5260f7d 1b5d55e 5260f7d 1b5d55e 5260f7d 1b5d55e 5260f7d 1b5d55e 5260f7d 1b5d55e 5260f7d 1b5d55e 5260f7d 1b5d55e 5260f7d 1b5d55e 5260f7d 1b5d55e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
import gradio as gr
import numpy as np
import random
import spaces
import torch
from pikigen import PikigenPipeline
# Trick required because it is not a native diffusers model
from diffusers.pipelines.pipeline_loading_utils import LOADABLE_CLASSES, ALL_IMPORTABLE_CLASSES
LOADABLE_CLASSES.setdefault("pikigen", {}).setdefault("DiT", []).extend(["save_pretrained", "from_pretrained"])
ALL_IMPORTABLE_CLASSES.setdefault("DiT", []).extend(["save_pretrained", "from_pretrained"])
device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "Freepik/Pikigen-test"
if torch.cuda.is_available():
torch_dtype = torch.bfloat16
else:
torch_dtype = torch.float32
pipe = PikigenPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
pipe.enable_model_cpu_offload() # For less memory consumption
pipe.vae.enable_slicing()
pipe.vae.enable_tiling()
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
@spaces.GPU
def infer(
prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
progress=gr.Progress(track_tqdm=True),
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
).images[0]
return image, seed
examples = [
"A photorealistic 3D render of a charming, mischievous young boy with long, floppy donkey ears and a small pink pig nose",
"A landscape photograph showing a serene mountain lake at sunset with reflections in crystal clear water",
"A detailed digital painting of a futuristic cyberpunk city with neon lights and flying vehicles",
]
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(" # Pikigen Text-to-Image Demo")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0, variant="primary")
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
visible=True,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=3.5,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=30,
)
gr.Examples(examples=examples, inputs=[prompt])
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
],
outputs=[result, seed],
)
if __name__ == "__main__":
demo.launch()
|