|
import gradio as gr |
|
import pandas as pd |
|
import datasets |
|
import seaborn as sns |
|
import matplotlib.pyplot as plt |
|
|
|
df = datasets.load_dataset("merve/supersoaker-failures") |
|
df = df["train"].to_pandas() |
|
df.dropna(axis=0, inplace=True) |
|
|
|
def plot(df): |
|
plt.scatter(df.measurement_13, df.measurement_15, c = df.loading,alpha=0.5) |
|
plt.savefig("scatter.png") |
|
df['failure'].value_counts().plot(kind='bar') |
|
plt.savefig("bar.png") |
|
sns.heatmap(df.select_dtypes(include="number").corr()) |
|
plt.savefig("corr.png") |
|
plots = ["corr.png","scatter.png", "bar.png"] |
|
return plots |
|
|
|
inputs = [gr.Dataframe(label="Supersoaker Production Data")] |
|
outputs = [gr.Gallery(label="Profiling Dashboard")] |
|
|
|
gr.Interface(plot, inputs=inputs, outputs=outputs, examples=[df.head(100)], title="Supersoaker Failures Analysis Dashboard").launch() |