Spaces:
Runtime error
Runtime error
Commit
·
87ec49a
1
Parent(s):
859d7b7
Upload app.py with huggingface_hub
Browse files
app.py
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import ViTFeatureExtractor, ViTForImageClassification
|
| 2 |
+
from PIL import Image
|
| 3 |
+
import torch
|
| 4 |
+
import torch.nn.functional as F
|
| 5 |
+
import time
|
| 6 |
+
|
| 7 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 8 |
+
|
| 9 |
+
feature_extractor = ViTFeatureExtractor.from_pretrained('google/vit-base-patch16-224')
|
| 10 |
+
model = ViTForImageClassification.from_pretrained('google/vit-base-patch16-224').to(device)
|
| 11 |
+
|
| 12 |
+
def predict(image):
|
| 13 |
+
inputs = feature_extractor(images=image, return_tensors="pt").to(device)
|
| 14 |
+
outputs = model(**inputs)
|
| 15 |
+
logits = outputs.logits
|
| 16 |
+
predicted_class_prob = F.softmax(logits, dim=-1).detach().cpu().numpy().max()
|
| 17 |
+
predicted_class_idx = logits.argmax(-1).item()
|
| 18 |
+
label = model.config.id2label[predicted_class_idx].split(",")[0]
|
| 19 |
+
time.sleep(2)
|
| 20 |
+
return {label: float(predicted_class_prob)}
|
| 21 |
+
|
| 22 |
+
import gradio as gr
|
| 23 |
+
|
| 24 |
+
gr.Interface(predict, gr.Image(type="pil"), "label").queue(concurrency_count=1).launch()
|