Spaces:
Sleeping
Sleeping
import torch | |
import gradio as gr | |
from torchvision import transforms | |
from PIL import Image | |
import numpy as np | |
from model import model | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
resize_input = transforms.Resize((32, 32)) | |
to_tensor = transforms.ToTensor() | |
def reconstruct_image(image): | |
image = Image.fromarray(image).convert('RGB') | |
image_32 = resize_input(image) | |
image_tensor = to_tensor(image_32).unsqueeze(0).to(device) | |
with torch.no_grad(): | |
mu, _ = model.encode(image_tensor) | |
recon = model.decode(mu) | |
recon_np = recon.squeeze(0).permute(1, 2, 0).cpu().numpy() | |
recon_img = Image.fromarray((recon_np * 255).astype(np.uint8)).resize((512, 512)) | |
orig_resized = image_32.resize((512, 512)) | |
return orig_resized, recon_img | |
def get_interface(): | |
with gr.Blocks() as iface: | |
gr.Markdown("## Encoding & Reconstruction") | |
with gr.Row(): | |
input_image = gr.Image(label="Input (Downsampled to 32x32)", type="numpy") | |
output_image = gr.Image(label="Reconstructed", type="pil") | |
run_button = gr.Button("Run Reconstruction") | |
run_button.click(fn=reconstruct_image, inputs=input_image, outputs=[input_image, output_image]) | |
examples = [ | |
["example_images/image1.jpg"], | |
["example_images/image2.jpg"], | |
["example_images/image3.jpg"], | |
["example_images/image10.jpg"], | |
["example_images/image4.jpg"], | |
["example_images/image5.jpg"], | |
["example_images/image6.jpg"], | |
["example_images/image7.jpg"], | |
["example_images/image8.jpg"], | |
] | |
gr.Examples( | |
examples=examples, | |
inputs=[input_image], | |
) | |
return iface | |