Spaces:
Sleeping
Sleeping
File size: 10,311 Bytes
eba6bc8 bf48cd0 eba6bc8 6692a78 eba6bc8 8336be3 f1f8e2a eba6bc8 1e90d4c eba6bc8 f1f8e2a eba6bc8 1e90d4c eba6bc8 c6e67aa eba6bc8 c6e67aa eba6bc8 1e90d4c eba6bc8 1e90d4c eba6bc8 96a2f23 eba6bc8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
import os, re, math, uuid, time, shutil, logging, tempfile, threading, requests, numpy as np
from datetime import datetime, timedelta
from collections import Counter
import gradio as gr
import torch
from transformers import GPT2Tokenizer, GPT2LMHeadModel
from keybert import KeyBERT
from TTS.api import TTS
from moviepy.editor import (
VideoFileClip, AudioFileClip, concatenate_videoclips, concatenate_audioclips,
CompositeAudioClip, AudioClip, TextClip, CompositeVideoClip, VideoClip, vfx
)
logging.basicConfig(level=logging.INFO, format="%(asctime)s %(levelname)s %(message)s")
logger = logging.getLogger(__name__)
PEXELS_API_KEY = os.getenv("PEXELS_API_KEY")
if not PEXELS_API_KEY:
raise RuntimeError("Debes definir PEXELS_API_KEY en Variables & secrets")
tokenizer = GPT2Tokenizer.from_pretrained("datificate/gpt2-small-spanish")
gpt2 = GPT2LMHeadModel.from_pretrained("datificate/gpt2-small-spanish").eval()
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
kw_model = KeyBERT("distilbert-base-multilingual-cased")
tts_engine = TTS(model_name="tts_models/es/css10/vits", progress_bar=False, gpu=False)
RESULTS_DIR = "video_results"
os.makedirs(RESULTS_DIR, exist_ok=True)
TASKS = {}
# βββββββββ helpers ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def gpt2_script(prompt: str, mx: int = 160) -> str:
ins = f"Escribe un guion corto, interesante y coherente sobre: {prompt}"
inp = tokenizer(ins, return_tensors="pt", truncation=True, max_length=512)
out = gpt2.generate(
**inp, max_length=mx + inp["input_ids"].shape[1], do_sample=True,
top_p=0.9, top_k=40, temperature=0.7, no_repeat_ngram_size=3,
pad_token_id=tokenizer.pad_token_id, eos_token_id=tokenizer.eos_token_id,
)
txt = tokenizer.decode(out[0], skip_special_tokens=True)
return txt.split("sobre:")[-1].strip()[:mx]
def coqui_tts(text: str, path: str):
text = re.sub(r"[^\w\s.,!?ÑéΓΓ³ΓΊΓ±ΓΓΓΓΓΓ]", "", text)[:500]
tts_engine.tts_to_file(text=text, file_path=path)
def keywords(text: str) -> list[str]:
clean = re.sub(r"[^\w\sÑéΓΓ³ΓΊΓ±ΓΓΓΓΓΓ]", "", text.lower())
try:
kws = kw_model.extract_keywords(clean, stop_words="spanish", top_n=5)
return [k.replace(" ", "+") for k, _ in kws if k]
except Exception:
words = [w for w in clean.split() if len(w) > 4]
return [w for w, _ in Counter(words).most_common(5)] or ["nature"]
def pexels_search(q: str, n: int) -> list[dict]:
r = requests.get(
"https://api.pexels.com/videos/search",
headers={"Authorization": PEXELS_API_KEY},
params={"query": q, "per_page": n, "orientation": "landscape"},
timeout=20,
)
r.raise_for_status()
return r.json().get("videos", [])
def download(url: str, folder: str) -> str | None:
name = uuid.uuid4().hex + ".mp4"
path = os.path.join(folder, name)
with requests.get(url, stream=True, timeout=60) as r:
r.raise_for_status()
with open(path, "wb") as f:
for chunk in r.iter_content(1024 * 1024):
f.write(chunk)
return path if os.path.getsize(path) > 1000 else None
def loop_audio(aclip: AudioFileClip, dur: float) -> AudioFileClip:
if aclip.duration >= dur:
return aclip.subclip(0, dur)
loops = math.ceil(dur / aclip.duration)
return concatenate_audioclips([aclip] * loops).subclip(0, dur)
def make_subs_clips(script: str, video_w: int, video_h: int, duration: float):
sentences = [s.strip() for s in re.split(r"[.!?ΒΏΒ‘]", script) if s.strip()]
total_words = sum(len(s.split()) for s in sentences) or 1
word_time = duration / total_words
clips, cursor = [], 0.0
for sent in sentences:
n_words = len(sent.split())
dur = n_words * word_time
txt_clip = (
TextClip(sent, fontsize=int(video_h * 0.05), color="white",
stroke_color="black", stroke_width=2, method="caption",
size=(int(video_w * 0.9), None))
.set_start(cursor)
.set_duration(dur)
.set_position(("center", video_h * 0.85))
)
clips.append(txt_clip)
cursor += dur
return clips
def make_grain_clip(size: tuple[int, int], duration: float):
w, h = size
def frame(_t):
noise = np.random.randint(0, 256, (h, w, 1), dtype=np.uint8)
return np.repeat(noise, 3, axis=2)
return VideoClip(frame, duration=duration).set_opacity(0.15)
# βββββββββ video builder ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def build_video(text: str, gen_script: bool, music_fp: str | None) -> str:
tmp = tempfile.mkdtemp()
script = gpt2_script(text) if gen_script else text.strip()
voice_path = os.path.join(tmp, "voice.mp3")
coqui_tts(script, voice_path)
voice_clip = AudioFileClip(voice_path)
adur = voice_clip.duration
vids = []
for kw in keywords(script):
if len(vids) >= 8:
break
for v in pexels_search(kw, 2):
best = max(v["video_files"], key=lambda x: x["width"] * x["height"])
p = download(best["link"], tmp)
if p:
vids.append(p)
if len(vids) >= 8:
break
if not vids:
raise RuntimeError("Sin vΓdeos disponibles")
segs, acc = [], 0
for path in vids:
if acc >= adur + 2:
break
clip = VideoFileClip(path)
seg = clip.subclip(0, min(8, clip.duration))
segs.append(seg)
acc += seg.duration
base = concatenate_videoclips(segs, method="chain")
if base.duration < adur:
loops = math.ceil(adur / base.duration)
base = concatenate_videoclips([base] * loops, method="chain")
base = base.subclip(0, adur)
if music_fp:
mclip = loop_audio(AudioFileClip(music_fp), adur).volumex(0.2)
audio = CompositeAudioClip([mclip, voice_clip])
else:
audio = voice_clip
subs = make_subs_clips(script, base.w, base.h, adur)
grain = make_grain_clip((base.w, base.h), adur)
final_vid = CompositeVideoClip([base, grain, *subs]).set_audio(audio)
out_path = os.path.join(tmp, "final.mp4")
final_vid.write_videofile(out_path, fps=24, codec="libx264", audio_codec="aac", logger=None)
return out_path
# βββββββββ async tasks ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def worker(tid: str, mode: str, topic: str, user_script: str, music: str | None):
try:
txt = topic if mode == "Generar Guion con IA" else user_script
res_tmp = build_video(txt, mode == "Generar Guion con IA", music)
final_path = os.path.join(RESULTS_DIR, f"{tid}.mp4")
shutil.copy2(res_tmp, final_path)
TASKS[tid] = {"status": "done", "result": final_path, "ts": datetime.utcnow()}
except Exception as e:
TASKS[tid] = {"status": "error", "error": str(e), "ts": datetime.utcnow()}
def submit(mode, topic, user_script, music):
content = topic if mode == "Generar Guion con IA" else user_script
if not content.strip():
return "", "Ingresa texto"
tid = uuid.uuid4().hex[:8]
TASKS[tid] = {"status": "processing", "ts": datetime.utcnow()}
threading.Thread(target=worker, args=(tid, mode, topic, user_script, music), daemon=True).start()
return tid, f"Tarea {tid} creada"
def check(tid):
if tid not in TASKS:
return None, None, "ID invΓ‘lido"
info = TASKS[tid]
stat = info["status"]
if stat == "processing":
return None, None, "Procesando..."
if stat == "error":
return None, None, f"Error: {info['error']}"
return info["result"], info["result"], "VΓdeo listo π"
# βββββββββ janitor thread βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def janitor():
while True:
now = datetime.utcnow()
for fname in os.listdir(RESULTS_DIR):
fpath = os.path.join(RESULTS_DIR, fname)
try:
mtime = datetime.utcfromtimestamp(os.path.getmtime(fpath))
if now - mtime > timedelta(hours=24):
os.remove(fpath)
for k, v in list(TASKS.items()):
if v.get("result") == fpath:
del TASKS[k]
except Exception:
pass
time.sleep(3600)
threading.Thread(target=janitor, daemon=True).start()
# βββββββββ gradio ui βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
with gr.Blocks(title="Generador de VΓdeos IA") as demo:
with gr.Tabs():
with gr.TabItem("Crear VΓdeo"):
mode = gr.Radio(["Generar Guion con IA", "Usar Mi Guion"], value="Generar Guion con IA")
topic = gr.Textbox(label="Tema")
user_script = gr.Textbox(label="Guion Completo", visible=False)
music = gr.Audio(type="filepath", label="MΓΊsica (opcional)")
btn = gr.Button("Generar")
tid_out = gr.Textbox(label="ID de tarea")
msg = gr.Textbox(label="Estado")
with gr.TabItem("Revisar Estado"):
tid_in = gr.Textbox(label="ID de tarea")
chk = gr.Button("Verificar")
vid = gr.Video()
dlf = gr.File()
mode.change(
lambda m: (gr.update(visible=m == "Generar Guion con IA"), gr.update(visible=m != "Generar Guion con IA")),
mode, [topic, user_script]
)
btn.click(submit, [mode, topic, user_script, music], [tid_out, msg])
chk.click(check, tid_in, [vid, dlf, msg])
if __name__ == "__main__":
demo.launch() |