Spaces:
Running
Running
File size: 18,537 Bytes
d6814f1 799b037 d6814f1 799b037 fe49aa3 799b037 fe49aa3 d6814f1 79f2daf d6814f1 3f26784 d6814f1 1df6810 d6814f1 29204f7 d6814f1 29204f7 d6814f1 d3caf4c d6814f1 d3caf4c d6814f1 d3caf4c d6814f1 d3caf4c d6814f1 d3caf4c d6814f1 d3caf4c d6814f1 d3caf4c d6814f1 d3caf4c 799b037 d6814f1 d3caf4c d6814f1 59177aa d3caf4c d6814f1 d3caf4c 59177aa d6814f1 c99406b d3caf4c c99406b d6814f1 c99406b 59177aa c99406b 59177aa d3caf4c 59177aa fe49aa3 d6814f1 d3caf4c 59177aa d3caf4c 59177aa d6814f1 59177aa d6814f1 59177aa d6814f1 59177aa d6814f1 59177aa d6814f1 fe49aa3 d6814f1 1df6810 d6814f1 a589da1 59177aa 8761807 d6814f1 8761807 62d2b15 59177aa 62d2b15 59177aa d6814f1 59177aa eb59db6 d6814f1 29204f7 d6814f1 eb59db6 4f228ef 29204f7 d6814f1 d3caf4c d6814f1 eb59db6 ef79581 d6814f1 59177aa 29204f7 e41b021 29204f7 d6814f1 eb59db6 29204f7 59177aa d3caf4c d6814f1 29204f7 d6814f1 29204f7 d6814f1 29204f7 d6814f1 ef79581 c492b2c d6814f1 ef79581 29204f7 d6814f1 29204f7 d6814f1 29204f7 eb59db6 d6814f1 24cd13f d6814f1 1e4825e d6814f1 29204f7 d6814f1 59177aa 4f228ef 29204f7 d6814f1 29204f7 d6814f1 1df6810 59177aa d3caf4c 1df6810 d6814f1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 |
"""
try:
client = get_openai_client()
with st.spinner("GPT์๊ฒ ๋์์ธ ์์ด๋์ด ์์ฑ ์ค..."):
response = client.chat.completions.create(
model="gpt-4.1-mini",
messages=[{"role": "user", "content": prompt}],
temperature=0.9,
max_tokens=2500,
)
result_text = response.choices[0].message.content
st.markdown(result_text)
except Exception as e:
st.error(f"์ค๋ฅ ๋ฐ์: {e}")
# โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ Streamlit ๋ฉ์ธ ์ฑ โโโโโโโโโโโโโโโโโโโโโโ
def idea_generator_app():
st.title("Ilรบvatar(์ผ๋ฃจ๋ฐํ๋ฅด) : Decision Support AI")
st.caption("'์ผ๋ฃจ๋ฐํ๋ฅด'๋ ๋น
๋ฐ์ดํฐ๋ฅผ ์์จ์ ์ผ๋ก ์์งยท๋ถ์ํ์ฌ 12์ต ๊ฐ ์ด์์ ๋ณตํฉ ์์ฌ๊ฒฐ์ ๋ณ์๋ฅผ ์ค์๊ฐ ๋ณ๋ ฌ ์ฒ๋ฆฌ, ์ ๋ต์ ํต์ฐฐ์ ๋์ถํ๋ ์ด์ง๋ฅํ ์์ฌ๊ฒฐ์ ์์คํ
์
๋๋ค.")
default_vals = {
"ai_model": "gpt-4.1-mini",
"messages": [],
"auto_save": True,
"generate_image": True,
"web_search_enabled": True,
"kaggle_enabled": True,
"selected_frameworks": ["sunzi"],
"GLOBAL_PICK_COUNT": {},
"_skip_dup_idx": None
}
for k, v in default_vals.items():
if k not in st.session_state:
st.session_state[k] = v
sb = st.sidebar
st.session_state.temp = sb.slider(
"Diversity temperature", 0.1, 3.0, 1.3, 0.1,
help="0.1 = ์ฐ๊ด์ฑ ์์ฃผ, 3.0 = ๋งค์ฐ ๋์ ๋ค์์ฑ"
)
sb.title("Decision Support Settings")
sb.toggle("Auto Save", key="auto_save")
sb.toggle("Auto Image Generation", key="generate_image")
st.session_state.web_search_enabled = sb.toggle(
"Use Web Search", value=st.session_state.web_search_enabled
)
st.session_state.kaggle_enabled = sb.toggle(
"Use Kaggle Datasets", value=st.session_state.kaggle_enabled
)
if st.session_state.web_search_enabled:
sb.info("โ
Web search results will be integrated.")
if st.session_state.kaggle_enabled:
if KAGGLE_KEY:
sb.info("โ
Kaggle datasets will be analyzed.")
else:
sb.error("โ ๏ธ KAGGLE_KEY not set. Kaggle integration disabled.")
st.session_state.kaggle_enabled = False
# ๋ถ์ ํ๋ ์์ํฌ ์ ํ
sb.subheader("๋ถ์ ํ๋ ์์ํฌ ์ค์ ")
selected_frameworks = sb.multiselect(
"์ฌ์ฉํ ๊ฒฝ์ ํ๋ ์์ํฌ ์ ํ",
options=list(BUSINESS_FRAMEWORKS.keys()),
default=st.session_state.selected_frameworks,
format_func=lambda x: BUSINESS_FRAMEWORKS[x]
)
st.session_state.selected_frameworks = selected_frameworks or ["sunzi"]
# ์์ ํ ํฝ
example_topics = {
"example1": "์ค๋งํธํ ํ๊ฒฝ์์ ์ฌ์ฉ์ ๊ฒฝํ์ ๊ฐ์ ํ ์ ์๋ ์๋ก์ด ๊ฐ์ ์ ํ ๋์์ธ ์์ฌ๊ฒฐ์ ",
"example2": "์นํ๊ฒฝ ์๋์ง ๋ถ์ผ ์ง์ถ์ ์ํ ์ต์ ๋น์ฆ๋์ค ๋ชจ๋ธ ์ ํ ์์ฌ๊ฒฐ์ ",
"example3": "2030๋
์๋ฃ ํฌ์ค์ผ์ด ์ฐ์
์ ๊ธฐ์ ๋ฐ์ ๋ฐฉํฅ๊ณผ ํฌ์ ์ ๋ต ์์ฌ๊ฒฐ์ "
}
sb.subheader("Example Decision Topics")
c1, c2, c3 = sb.columns(3)
if c1.button("์ ํ ๋์์ธ ์์ฌ๊ฒฐ์ ", key="ex1"):
process_example(example_topics["example1"])
if c2.button("์ ์ฌ์
์ง์ถ ์ ๋ต", key="ex2"):
process_example(example_topics["example2"])
if c3.button("์ฐ์
๋ฏธ๋ ์ ๋ง", key="ex3"):
process_example(example_topics["example3"])
# (์ ๊ท) ๋์์ธ/๋ฐ๋ช
์น์
sb.subheader("๋์์ธ/๋ฐ๋ช
")
with sb.expander("๋์์ธ/๋ฐ๋ช
์์ด๋์ด ์์ฑ", expanded=True):
invention_keyword = st.text_input("ํค์๋ ํ๋กฌํํธ", key="invention_keyword")
if st.button("๋์์ธ/๋ฐ๋ช
์์ด๋์ด ์คํ"):
process_invention_ideas(invention_keyword)
# ์ต๊ทผ ๊ฒฐ๊ณผ ๋ค์ด๋ก๋
latest_ideas = next(
(m["content"] for m in reversed(st.session_state.messages)
if m["role"] == "assistant" and m["content"].strip()),
None
)
if latest_ideas:
title_match = re.search(r"# (.*?)(\n|$)", latest_ideas)
title = (title_match.group(1) if title_match else "ideas").strip()
sb.subheader("Download Latest Ideas")
d1, d2 = sb.columns(2)
d1.download_button("Download as Markdown", latest_ideas,
file_name=f"{title}.md", mime="text/markdown")
d2.download_button("Download as HTML", md_to_html(latest_ideas, title),
file_name=f"{title}.html", mime="text/html")
# ๋ํ ํ์คํ ๋ฆฌ ์
๋ก๋/๋ค์ด๋ก๋
up = sb.file_uploader("Load Conversation History (.json)",
type=["json"], key="json_uploader")
if up:
try:
st.session_state.messages = json.load(up)
sb.success("Conversation history loaded successfully")
except Exception as e:
sb.error(f"Failed to load: {e}")
if sb.button("Download Conversation as JSON"):
sb.download_button(
"Save JSON",
data=json.dumps(st.session_state.messages, ensure_ascii=False, indent=2),
file_name="chat_history.json",
mime="application/json"
)
# ํ์ผ ์
๋ก๋
st.subheader("File Upload (Optional)")
uploaded_files = st.file_uploader(
"Upload files to reference in the idea generation (txt, csv, pdf)",
type=["txt", "csv", "pdf"],
accept_multiple_files=True,
key="file_uploader"
)
if uploaded_files:
st.success(f"{len(uploaded_files)} files uploaded.")
with st.expander("Preview Uploaded Files", expanded=False):
for idx, file in enumerate(uploaded_files):
st.write(f"**File Name:** {file.name}")
ext = file.name.split('.')[-1].lower()
try:
if ext == 'txt':
preview = file.read(1000).decode('utf-8', errors='ignore')
file.seek(0)
st.text_area("Preview", preview + ("..." if len(preview) >= 1000 else ""), height=150)
elif ext == 'csv':
df = pd.read_csv(file)
file.seek(0)
st.dataframe(df.head(5))
elif ext == 'pdf':
reader = PyPDF2.PdfReader(io.BytesIO(file.read()), strict=False)
file.seek(0)
pg_txt = reader.pages[0].extract_text() if reader.pages else "(No text)"
st.text_area("Preview", (pg_txt[:500] + "...") if pg_txt else "(No text)", height=150)
except Exception as e:
st.error(f"Preview failed: {e}")
if idx < len(uploaded_files) - 1:
st.divider()
# ์ด๋ฏธ ๋ ๋๋ ๋ฉ์์ง(์ค๋ณต ๋ฐฉ์ง)
skip_idx = st.session_state.get("_skip_dup_idx")
for i, m in enumerate(st.session_state.messages):
if skip_idx is not None and i == skip_idx:
continue
with st.chat_message(m["role"]):
st.markdown(m["content"])
if "image" in m:
st.image(m["image"], caption=m.get("image_caption", ""))
st.session_state["_skip_dup_idx"] = None
# ์ฑํ
์
๋ ฅ
prompt = st.chat_input("์์ฌ ๊ฒฐ์ ์ ๋์์ด ํ์ํ ์ํฉ์ด๋ ๋ฌธ์ ๋ฅผ ์ค๋ช
ํด ์ฃผ์ธ์.")
if prompt:
process_input(prompt, uploaded_files)
sb.markdown("---")
sb.markdown("Created by [VIDraft](https://discord.gg/openfreeai)")
def process_example(topic):
process_input(topic, [])
def process_input(prompt: str, uploaded_files):
if not any(m["role"] == "user" and m["content"] == prompt for m in st.session_state.messages):
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("user"):
st.markdown(prompt)
for i in range(len(st.session_state.messages) - 1):
if (st.session_state.messages[i]["role"] == "user"
and st.session_state.messages[i]["content"] == prompt
and st.session_state.messages[i + 1]["role"] == "assistant"):
return
with st.chat_message("assistant"):
status = st.status("Preparing to generate ideasโฆ")
stream_placeholder = st.empty()
full_response = ""
try:
client = get_openai_client()
status.update(label="Initializing modelโฆ")
selected_cat = st.session_state.get("category_focus", None)
selected_frameworks = st.session_state.get("selected_frameworks", ["sunzi"])
sys_prompt = get_idea_system_prompt(
selected_category=selected_cat,
selected_frameworks=selected_frameworks
)
def category_context(sel):
if sel:
return json.dumps({sel: physical_transformation_categories[sel]}, ensure_ascii=False)
return "ALL_CATEGORIES: " + ", ".join(physical_transformation_categories.keys())
use_web_search = st.session_state.web_search_enabled
use_kaggle = st.session_state.kaggle_enabled
has_uploaded = bool(uploaded_files)
search_content = None
kaggle_content = None
file_content = None
# โ ์น๊ฒ์
if use_web_search:
status.update(label="Searching the webโฆ")
with st.spinner("Searchingโฆ"):
search_content = do_web_search(keywords(prompt, top=5))
# โก Kaggle
if use_kaggle and check_kaggle_availability():
status.update(label="Kaggle ๋ฐ์ดํฐ์
๋ถ์ ์คโฆ")
with st.spinner("Searching Kaggleโฆ"):
kaggle_kw = extract_kaggle_search_keywords(prompt)
try:
datasets = search_kaggle_datasets(kaggle_kw)
except Exception as e:
logging.warning(f"search_kaggle_datasets ์ค๋ฅ ๋ฌด์: {e}")
datasets = []
analyses = []
if datasets:
status.update(label="Downloading & analysing datasetsโฆ")
for ds in datasets:
try:
ana = download_and_analyze_dataset(ds["ref"])
except Exception as e:
logging.error(f"Kaggle ๋ถ์ ์ค๋ฅ({ds['ref']}) : {e}")
ana = f"๋ฐ์ดํฐ์
๋ถ์ ์ค๋ฅ: {e}"
analyses.append({"meta": ds, "analysis": ana})
if analyses:
kaggle_content = format_kaggle_analysis_markdown_multi(analyses)
# โข ํ์ผ ์
๋ก๋
if has_uploaded:
status.update(label="Reading uploaded filesโฆ")
with st.spinner("Processing filesโฆ"):
file_content = process_uploaded_files(uploaded_files)
# โฃ Military Tactics Dataset (์ ๊ท ์ถ๊ฐ)
mil_content = None
if is_military_query(prompt):
status.update(label="Searching military tactics datasetโฆ")
with st.spinner("Loading military insightsโฆ"):
mil_rows = military_search(prompt)
if mil_rows:
mil_content = "# Military Tactics Dataset Reference\n\n"
for i, row in enumerate(mil_rows, 1):
mil_content += (
f"### Case {i}\n"
f"**Scenario:** {row['scenario_description']}\n\n"
f"**Attack Reasoning:** {row['attack_reasoning']}\n\n"
f"**Defense Reasoning:** {row['defense_reasoning']}\n\n---\n"
)
user_content = prompt
if search_content:
user_content += "\n\n" + search_content
if kaggle_content:
user_content += "\n\n" + kaggle_content
if file_content:
user_content += "\n\n" + file_content
if mil_content:
user_content += "\n\n" + mil_content
# ๋ด๋ถ ๋ถ์
status.update(label="์์ฌ ๊ฒฐ์ ๋ฌธ์ ๋ถ์ ์คโฆ")
decision_purpose = identify_decision_purpose(prompt)
relevance_scores = compute_relevance_scores(prompt, PHYS_CATEGORIES)
status.update(label="์์ฌ ๊ฒฐ์ ๋งคํธ๋ฆญ์ค ์์ฑ ์คโฆ")
T = st.session_state.temp
k_cat_range = (4, 8) if T < 1.0 else (6, 10) if T < 2.0 else (8, 12)
n_item_range = (2, 4) if T < 1.0 else (3, 6) if T < 2.0 else (4, 8)
depth_range = (2, 3) if T < 1.0 else (2, 5) if T < 2.0 else (2, 6)
combos = generate_random_comparison_matrix(
PHYS_CATEGORIES,
relevance_scores,
k_cat=k_cat_range,
n_item=n_item_range,
depth_range=depth_range,
seed=hash(prompt) & 0xFFFFFFFF,
T=T,
)
combos_table = "| ์กฐํฉ | ๊ฐ์ค์น | ์ํฅ๋ | ์ ๋ขฐ๋ | ์ด์ |\n|------|--------|--------|--------|-----|\n"
for w, imp, conf, tot, cmb in combos:
combo_str = " + ".join(f"{c[0]}-{c[1]}" for c in cmb)
combos_table += f"| {combo_str} | {w} | {imp} | {conf:.1f} | {tot} |\n"
purpose_info = "\n\n## ์์ฌ ๊ฒฐ์ ๋ชฉ์ ๋ถ์\n"
if decision_purpose['purposes']:
purpose_info += "### ์ฃผ์ ๋ชฉ์ \n"
for p, s in decision_purpose['purposes']:
purpose_info += f"- **{p}** (๊ด๋ จ์ฑ: {s})\n"
if decision_purpose['constraints']:
purpose_info += "\n### ์ฃผ์ ์ ์ฝ ์กฐ๊ฑด\n"
for c, s in decision_purpose['constraints']:
purpose_info += f"- **{c}** (๊ด๋ จ์ฑ: {s})\n"
framework_contents = []
if "swot" in selected_frameworks:
swot_res = analyze_with_swot(prompt)
framework_contents.append(format_business_framework_analysis("swot", swot_res))
if "porter" in selected_frameworks:
porter_res = analyze_with_porter(prompt)
framework_contents.append(format_business_framework_analysis("porter", porter_res))
if "bcg" in selected_frameworks:
bcg_res = analyze_with_bcg(prompt)
framework_contents.append(format_business_framework_analysis("bcg", bcg_res))
if framework_contents:
user_content += "\n\n## ๊ฒฝ์ ํ๋ ์์ํฌ ๋ถ์ ๊ฒฐ๊ณผ\n\n" + "\n\n".join(framework_contents)
user_content += f"\n\n## ์์ฌ ๊ฒฐ์ ๋งคํธ๋ฆญ์ค ๋ถ์{purpose_info}\n{combos_table}"
status.update(label="Generating ideasโฆ")
api_messages = [
{"role": "system", "content": sys_prompt},
{"role": "system", "name": "category_db", "content": category_context(selected_cat)},
{"role": "user", "content": user_content},
]
stream = client.chat.completions.create(
model="gpt-4.1-mini",
messages=api_messages,
temperature=1,
max_tokens=MAX_TOKENS,
top_p=1,
stream=True
)
for chunk in stream:
if chunk.choices and chunk.choices[0].delta.content:
full_response += chunk.choices[0].delta.content
stream_placeholder.markdown(full_response + "โ")
stream_placeholder.markdown(full_response)
status.update(label="Ideas created!", state="complete")
# ์ด๋ฏธ์ง ์์ฑ
img_data = img_caption = None
if st.session_state.generate_image and full_response:
match = re.search(r"###\s*์ด๋ฏธ์ง\s*ํ๋กฌํํธ\s*\n+([^\n]+)", full_response, re.I)
if not match:
match = re.search(r"Image\s+Prompt\s*[:\-]\s*([^\n]+)", full_response, re.I)
if match:
raw_prompt = re.sub(r'[\r\n"\'\\]', " ", match.group(1)).strip()
with st.spinner("์์ด๋์ด ์ด๋ฏธ์ง ์์ฑ ์คโฆ"):
img_data, img_caption = generate_image(raw_prompt)
if img_data:
st.image(img_data, caption=f"์์ด๋์ด ์๊ฐํ โ {img_caption}")
answer_msg = {"role": "assistant", "content": full_response}
if img_data:
answer_msg["image"] = img_data
answer_msg["image_caption"] = img_caption
st.session_state["_skip_dup_idx"] = len(st.session_state.messages)
st.session_state.messages.append(answer_msg)
# ๋ค์ด๋ก๋ ๋ฒํผ
st.subheader("Download This Output")
col_md, col_html = st.columns(2)
col_md.download_button(
"Markdown",
data=full_response,
file_name=f"{prompt[:30]}.md",
mime="text/markdown"
)
col_html.download_button(
"HTML",
data=md_to_html(full_response, prompt[:30]),
file_name=f"{prompt[:30]}.html",
mime="text/html"
)
if st.session_state.auto_save:
fn = f"chat_history_auto_{datetime.now():%Y%m%d_%H%M%S}.json"
with open(fn, "w", encoding="utf-8") as fp:
json.dump(st.session_state.messages, fp, ensure_ascii=False, indent=2)
except Exception as e:
logging.error("process_input error", exc_info=True)
st.error(f"โ ๏ธ ์์
์ค ์ค๋ฅ๊ฐ ๋ฐ์ํ์ต๋๋ค: {e}")
st.session_state.messages.append(
{"role": "assistant", "content": f"โ ๏ธ ์ค๋ฅ: {e}"}
)
def main():
idea_generator_app()
if __name__ == "__main__":
main()
|