File size: 18,537 Bytes
d6814f1
 
 
799b037
 
 
 
 
 
 
d6814f1
799b037
 
fe49aa3
799b037
 
fe49aa3
d6814f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79f2daf
d6814f1
 
 
 
 
3f26784
d6814f1
 
 
1df6810
d6814f1
 
29204f7
d6814f1
 
29204f7
 
d6814f1
d3caf4c
d6814f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d3caf4c
d6814f1
d3caf4c
d6814f1
 
 
d3caf4c
d6814f1
d3caf4c
d6814f1
d3caf4c
d6814f1
d3caf4c
d6814f1
d3caf4c
 
799b037
 
 
 
 
 
 
d6814f1
d3caf4c
d6814f1
 
59177aa
 
d3caf4c
 
d6814f1
d3caf4c
59177aa
d6814f1
c99406b
d3caf4c
c99406b
 
d6814f1
 
 
c99406b
 
 
59177aa
c99406b
59177aa
 
 
 
d3caf4c
59177aa
 
 
 
fe49aa3
d6814f1
d3caf4c
59177aa
d3caf4c
59177aa
 
 
 
 
d6814f1
59177aa
 
 
 
d6814f1
 
 
 
 
 
59177aa
 
 
d6814f1
 
59177aa
d6814f1
 
 
 
 
59177aa
 
d6814f1
 
 
 
 
fe49aa3
 
 
 
d6814f1
1df6810
d6814f1
 
a589da1
59177aa
8761807
d6814f1
8761807
62d2b15
59177aa
62d2b15
59177aa
d6814f1
59177aa
 
 
eb59db6
d6814f1
 
 
 
 
29204f7
d6814f1
 
 
 
eb59db6
4f228ef
29204f7
d6814f1
 
 
 
d3caf4c
d6814f1
 
 
 
eb59db6
ef79581
 
d6814f1
 
 
 
 
 
 
 
 
 
 
 
59177aa
29204f7
 
e41b021
29204f7
d6814f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb59db6
29204f7
 
59177aa
d3caf4c
d6814f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29204f7
 
 
d6814f1
 
29204f7
 
d6814f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29204f7
d6814f1
ef79581
c492b2c
d6814f1
 
ef79581
29204f7
 
 
 
 
 
 
 
d6814f1
29204f7
 
 
d6814f1
 
 
29204f7
eb59db6
d6814f1
 
24cd13f
d6814f1
 
 
1e4825e
d6814f1
29204f7
d6814f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59177aa
4f228ef
29204f7
d6814f1
29204f7
d6814f1
 
1df6810
59177aa
d3caf4c
1df6810
 
d6814f1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
"""

    try:
        client = get_openai_client()
        with st.spinner("GPT์—๊ฒŒ ๋””์ž์ธ ์•„์ด๋””์–ด ์ƒ์„ฑ ์ค‘..."):
            response = client.chat.completions.create(
                model="gpt-4.1-mini",
                messages=[{"role": "user", "content": prompt}],
                temperature=0.9,
                max_tokens=2500,
            )
        result_text = response.choices[0].message.content
        st.markdown(result_text)
    except Exception as e:
        st.error(f"์˜ค๋ฅ˜ ๋ฐœ์ƒ: {e}")


# โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ Streamlit ๋ฉ”์ธ ์•ฑ โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€
def idea_generator_app():
    st.title("Ilรบvatar(์ผ๋ฃจ๋ฐ”ํƒ€๋ฅด) : Decision Support AI")
    st.caption("'์ผ๋ฃจ๋ฐ”ํƒ€๋ฅด'๋Š” ๋น…๋ฐ์ดํ„ฐ๋ฅผ ์ž์œจ์ ์œผ๋กœ ์ˆ˜์ง‘ยท๋ถ„์„ํ•˜์—ฌ 12์–ต ๊ฐœ ์ด์ƒ์˜ ๋ณตํ•ฉ ์˜์‚ฌ๊ฒฐ์ • ๋ณ€์ˆ˜๋ฅผ ์‹ค์‹œ๊ฐ„ ๋ณ‘๋ ฌ ์ฒ˜๋ฆฌ, ์ „๋žต์  ํ†ต์ฐฐ์„ ๋„์ถœํ•˜๋Š” ์ดˆ์ง€๋Šฅํ˜• ์˜์‚ฌ๊ฒฐ์ • ์‹œ์Šคํ…œ์ž…๋‹ˆ๋‹ค.")

    default_vals = {
        "ai_model": "gpt-4.1-mini",
        "messages": [],
        "auto_save": True,
        "generate_image": True,
        "web_search_enabled": True,
        "kaggle_enabled": True,
        "selected_frameworks": ["sunzi"],
        "GLOBAL_PICK_COUNT": {},
        "_skip_dup_idx": None
    }
    for k, v in default_vals.items():
        if k not in st.session_state:
            st.session_state[k] = v

    sb = st.sidebar
    st.session_state.temp = sb.slider(
        "Diversity temperature", 0.1, 3.0, 1.3, 0.1,
        help="0.1 = ์—ฐ๊ด€์„ฑ ์œ„์ฃผ, 3.0 = ๋งค์šฐ ๋†’์€ ๋‹ค์–‘์„ฑ"
    )

    sb.title("Decision Support Settings")
    sb.toggle("Auto Save", key="auto_save")
    sb.toggle("Auto Image Generation", key="generate_image")

    st.session_state.web_search_enabled = sb.toggle(
        "Use Web Search", value=st.session_state.web_search_enabled
    )
    st.session_state.kaggle_enabled = sb.toggle(
        "Use Kaggle Datasets", value=st.session_state.kaggle_enabled
    )

    if st.session_state.web_search_enabled:
        sb.info("โœ… Web search results will be integrated.")
    if st.session_state.kaggle_enabled:
        if KAGGLE_KEY:
            sb.info("โœ… Kaggle datasets will be analyzed.")
        else:
            sb.error("โš ๏ธ KAGGLE_KEY not set. Kaggle integration disabled.")
            st.session_state.kaggle_enabled = False

    # ๋ถ„์„ ํ”„๋ ˆ์ž„์›Œํฌ ์„ ํƒ
    sb.subheader("๋ถ„์„ ํ”„๋ ˆ์ž„์›Œํฌ ์„ค์ •")
    selected_frameworks = sb.multiselect(
        "์‚ฌ์šฉํ•  ๊ฒฝ์˜ ํ”„๋ ˆ์ž„์›Œํฌ ์„ ํƒ",
        options=list(BUSINESS_FRAMEWORKS.keys()),
        default=st.session_state.selected_frameworks,
        format_func=lambda x: BUSINESS_FRAMEWORKS[x]
    )
    st.session_state.selected_frameworks = selected_frameworks or ["sunzi"]

    # ์˜ˆ์‹œ ํ† ํ”ฝ
    example_topics = {
        "example1": "์Šค๋งˆํŠธํ™ˆ ํ™˜๊ฒฝ์—์„œ ์‚ฌ์šฉ์ž ๊ฒฝํ—˜์„ ๊ฐœ์„ ํ•  ์ˆ˜ ์žˆ๋Š” ์ƒˆ๋กœ์šด ๊ฐ€์ „์ œํ’ˆ ๋””์ž์ธ ์˜์‚ฌ๊ฒฐ์ •",
        "example2": "์นœํ™˜๊ฒฝ ์—๋„ˆ์ง€ ๋ถ„์•ผ ์ง„์ถœ์„ ์œ„ํ•œ ์ตœ์  ๋น„์ฆˆ๋‹ˆ์Šค ๋ชจ๋ธ ์„ ํƒ ์˜์‚ฌ๊ฒฐ์ •",
        "example3": "2030๋…„ ์˜๋ฃŒ ํ—ฌ์Šค์ผ€์–ด ์‚ฐ์—…์˜ ๊ธฐ์ˆ  ๋ฐœ์ „ ๋ฐฉํ–ฅ๊ณผ ํˆฌ์ž ์ „๋žต ์˜์‚ฌ๊ฒฐ์ •"
    }
    sb.subheader("Example Decision Topics")
    c1, c2, c3 = sb.columns(3)
    if c1.button("์ œํ’ˆ ๋””์ž์ธ ์˜์‚ฌ๊ฒฐ์ •", key="ex1"):
        process_example(example_topics["example1"])
    if c2.button("์‹ ์‚ฌ์—… ์ง„์ถœ ์ „๋žต", key="ex2"):
        process_example(example_topics["example2"])
    if c3.button("์‚ฐ์—… ๋ฏธ๋ž˜ ์ „๋ง", key="ex3"):
        process_example(example_topics["example3"])

    # (์‹ ๊ทœ) ๋””์ž์ธ/๋ฐœ๋ช… ์„น์…˜
    sb.subheader("๋””์ž์ธ/๋ฐœ๋ช…")
    with sb.expander("๋””์ž์ธ/๋ฐœ๋ช… ์•„์ด๋””์–ด ์ƒ์„ฑ", expanded=True):
        invention_keyword = st.text_input("ํ‚ค์›Œ๋“œ ํ”„๋กฌํ”„ํŠธ", key="invention_keyword")
        if st.button("๋””์ž์ธ/๋ฐœ๋ช… ์•„์ด๋””์–ด ์‹คํ–‰"):
            process_invention_ideas(invention_keyword)

    # ์ตœ๊ทผ ๊ฒฐ๊ณผ ๋‹ค์šด๋กœ๋“œ
    latest_ideas = next(
        (m["content"] for m in reversed(st.session_state.messages)
         if m["role"] == "assistant" and m["content"].strip()),
        None
    )
    if latest_ideas:
        title_match = re.search(r"# (.*?)(\n|$)", latest_ideas)
        title = (title_match.group(1) if title_match else "ideas").strip()
        sb.subheader("Download Latest Ideas")
        d1, d2 = sb.columns(2)
        d1.download_button("Download as Markdown", latest_ideas,
                           file_name=f"{title}.md", mime="text/markdown")
        d2.download_button("Download as HTML", md_to_html(latest_ideas, title),
                           file_name=f"{title}.html", mime="text/html")

    # ๋Œ€ํ™” ํžˆ์Šคํ† ๋ฆฌ ์—…๋กœ๋“œ/๋‹ค์šด๋กœ๋“œ
    up = sb.file_uploader("Load Conversation History (.json)",
                          type=["json"], key="json_uploader")
    if up:
        try:
            st.session_state.messages = json.load(up)
            sb.success("Conversation history loaded successfully")
        except Exception as e:
            sb.error(f"Failed to load: {e}")

    if sb.button("Download Conversation as JSON"):
        sb.download_button(
            "Save JSON",
            data=json.dumps(st.session_state.messages, ensure_ascii=False, indent=2),
            file_name="chat_history.json",
            mime="application/json"
        )

    # ํŒŒ์ผ ์—…๋กœ๋“œ
    st.subheader("File Upload (Optional)")
    uploaded_files = st.file_uploader(
        "Upload files to reference in the idea generation (txt, csv, pdf)",
        type=["txt", "csv", "pdf"],
        accept_multiple_files=True,
        key="file_uploader"
    )
    if uploaded_files:
        st.success(f"{len(uploaded_files)} files uploaded.")
        with st.expander("Preview Uploaded Files", expanded=False):
            for idx, file in enumerate(uploaded_files):
                st.write(f"**File Name:** {file.name}")
                ext = file.name.split('.')[-1].lower()
                try:
                    if ext == 'txt':
                        preview = file.read(1000).decode('utf-8', errors='ignore')
                        file.seek(0)
                        st.text_area("Preview", preview + ("..." if len(preview) >= 1000 else ""), height=150)
                    elif ext == 'csv':
                        df = pd.read_csv(file)
                        file.seek(0)
                        st.dataframe(df.head(5))
                    elif ext == 'pdf':
                        reader = PyPDF2.PdfReader(io.BytesIO(file.read()), strict=False)
                        file.seek(0)
                        pg_txt = reader.pages[0].extract_text() if reader.pages else "(No text)"
                        st.text_area("Preview", (pg_txt[:500] + "...") if pg_txt else "(No text)", height=150)
                except Exception as e:
                    st.error(f"Preview failed: {e}")
                if idx < len(uploaded_files) - 1:
                    st.divider()

    # ์ด๋ฏธ ๋ Œ๋”๋œ ๋ฉ”์‹œ์ง€(์ค‘๋ณต ๋ฐฉ์ง€)
    skip_idx = st.session_state.get("_skip_dup_idx")
    for i, m in enumerate(st.session_state.messages):
        if skip_idx is not None and i == skip_idx:
            continue
        with st.chat_message(m["role"]):
            st.markdown(m["content"])
            if "image" in m:
                st.image(m["image"], caption=m.get("image_caption", ""))
    st.session_state["_skip_dup_idx"] = None

    # ์ฑ„ํŒ… ์ž…๋ ฅ
    prompt = st.chat_input("์˜์‚ฌ ๊ฒฐ์ •์— ๋„์›€์ด ํ•„์š”ํ•œ ์ƒํ™ฉ์ด๋‚˜ ๋ฌธ์ œ๋ฅผ ์„ค๋ช…ํ•ด ์ฃผ์„ธ์š”.")
    if prompt:
        process_input(prompt, uploaded_files)
    sb.markdown("---")
    sb.markdown("Created by [VIDraft](https://discord.gg/openfreeai)")

def process_example(topic):
    process_input(topic, [])

def process_input(prompt: str, uploaded_files):
    if not any(m["role"] == "user" and m["content"] == prompt for m in st.session_state.messages):
        st.session_state.messages.append({"role": "user", "content": prompt})
    with st.chat_message("user"):
        st.markdown(prompt)

    for i in range(len(st.session_state.messages) - 1):
        if (st.session_state.messages[i]["role"] == "user"
            and st.session_state.messages[i]["content"] == prompt
            and st.session_state.messages[i + 1]["role"] == "assistant"):
            return

    with st.chat_message("assistant"):
        status = st.status("Preparing to generate ideasโ€ฆ")
        stream_placeholder = st.empty()
        full_response = ""

        try:
            client = get_openai_client()
            status.update(label="Initializing modelโ€ฆ")

            selected_cat        = st.session_state.get("category_focus", None)
            selected_frameworks = st.session_state.get("selected_frameworks", ["sunzi"])

            sys_prompt = get_idea_system_prompt(
                selected_category=selected_cat,
                selected_frameworks=selected_frameworks
            )

            def category_context(sel):
                if sel:
                    return json.dumps({sel: physical_transformation_categories[sel]}, ensure_ascii=False)
                return "ALL_CATEGORIES: " + ", ".join(physical_transformation_categories.keys())

            use_web_search = st.session_state.web_search_enabled
            use_kaggle     = st.session_state.kaggle_enabled
            has_uploaded   = bool(uploaded_files)

            search_content  = None
            kaggle_content  = None
            file_content    = None

            # โ‘  ์›น๊ฒ€์ƒ‰
            if use_web_search:
                status.update(label="Searching the webโ€ฆ")
                with st.spinner("Searchingโ€ฆ"):
                    search_content = do_web_search(keywords(prompt, top=5))

            # โ‘ก Kaggle
            if use_kaggle and check_kaggle_availability():
                status.update(label="Kaggle ๋ฐ์ดํ„ฐ์…‹ ๋ถ„์„ ์ค‘โ€ฆ")
                with st.spinner("Searching Kaggleโ€ฆ"):
                    kaggle_kw = extract_kaggle_search_keywords(prompt)
                    try:
                        datasets = search_kaggle_datasets(kaggle_kw)
                    except Exception as e:
                        logging.warning(f"search_kaggle_datasets ์˜ค๋ฅ˜ ๋ฌด์‹œ: {e}")
                        datasets = []
                    analyses = []
                    if datasets:
                        status.update(label="Downloading & analysing datasetsโ€ฆ")
                        for ds in datasets:
                            try:
                                ana = download_and_analyze_dataset(ds["ref"])
                            except Exception as e:
                                logging.error(f"Kaggle ๋ถ„์„ ์˜ค๋ฅ˜({ds['ref']}) : {e}")
                                ana = f"๋ฐ์ดํ„ฐ์…‹ ๋ถ„์„ ์˜ค๋ฅ˜: {e}"
                            analyses.append({"meta": ds, "analysis": ana})
                    if analyses:
                        kaggle_content = format_kaggle_analysis_markdown_multi(analyses)

            # โ‘ข ํŒŒ์ผ ์—…๋กœ๋“œ
            if has_uploaded:
                status.update(label="Reading uploaded filesโ€ฆ")
                with st.spinner("Processing filesโ€ฆ"):
                    file_content = process_uploaded_files(uploaded_files)

            # โ‘ฃ Military Tactics Dataset (์‹ ๊ทœ ์ถ”๊ฐ€)
            mil_content = None
            if is_military_query(prompt):
                status.update(label="Searching military tactics datasetโ€ฆ")
                with st.spinner("Loading military insightsโ€ฆ"):
                    mil_rows = military_search(prompt)
                if mil_rows:
                    mil_content = "# Military Tactics Dataset Reference\n\n"
                    for i, row in enumerate(mil_rows, 1):
                        mil_content += (
                            f"### Case {i}\n"
                            f"**Scenario:** {row['scenario_description']}\n\n"
                            f"**Attack Reasoning:** {row['attack_reasoning']}\n\n"
                            f"**Defense Reasoning:** {row['defense_reasoning']}\n\n---\n"
                        )

            user_content = prompt
            if search_content:
                user_content += "\n\n" + search_content
            if kaggle_content:
                user_content += "\n\n" + kaggle_content
            if file_content:
                user_content += "\n\n" + file_content
            if mil_content:
                user_content += "\n\n" + mil_content

            # ๋‚ด๋ถ€ ๋ถ„์„
            status.update(label="์˜์‚ฌ ๊ฒฐ์ • ๋ฌธ์ œ ๋ถ„์„ ์ค‘โ€ฆ")
            decision_purpose = identify_decision_purpose(prompt)
            relevance_scores = compute_relevance_scores(prompt, PHYS_CATEGORIES)

            status.update(label="์˜์‚ฌ ๊ฒฐ์ • ๋งคํŠธ๋ฆญ์Šค ์ƒ์„ฑ ์ค‘โ€ฆ")
            T = st.session_state.temp
            k_cat_range  = (4, 8) if T < 1.0 else (6, 10) if T < 2.0 else (8, 12)
            n_item_range = (2, 4) if T < 1.0 else (3, 6) if T < 2.0 else (4, 8)
            depth_range  = (2, 3) if T < 1.0 else (2, 5) if T < 2.0 else (2, 6)
            combos = generate_random_comparison_matrix(
                PHYS_CATEGORIES,
                relevance_scores,
                k_cat=k_cat_range,
                n_item=n_item_range,
                depth_range=depth_range,
                seed=hash(prompt) & 0xFFFFFFFF,
                T=T,
            )

            combos_table = "| ์กฐํ•ฉ | ๊ฐ€์ค‘์น˜ | ์˜ํ–ฅ๋„ | ์‹ ๋ขฐ๋„ | ์ด์  |\n|------|--------|--------|--------|-----|\n"
            for w, imp, conf, tot, cmb in combos:
                combo_str = " + ".join(f"{c[0]}-{c[1]}" for c in cmb)
                combos_table += f"| {combo_str} | {w} | {imp} | {conf:.1f} | {tot} |\n"

            purpose_info = "\n\n## ์˜์‚ฌ ๊ฒฐ์ • ๋ชฉ์  ๋ถ„์„\n"
            if decision_purpose['purposes']:
                purpose_info += "### ์ฃผ์š” ๋ชฉ์ \n"
                for p, s in decision_purpose['purposes']:
                    purpose_info += f"- **{p}** (๊ด€๋ จ์„ฑ: {s})\n"
            if decision_purpose['constraints']:
                purpose_info += "\n### ์ฃผ์š” ์ œ์•ฝ ์กฐ๊ฑด\n"
                for c, s in decision_purpose['constraints']:
                    purpose_info += f"- **{c}** (๊ด€๋ จ์„ฑ: {s})\n"

            framework_contents = []
            if "swot" in selected_frameworks:
                swot_res = analyze_with_swot(prompt)
                framework_contents.append(format_business_framework_analysis("swot", swot_res))
            if "porter" in selected_frameworks:
                porter_res = analyze_with_porter(prompt)
                framework_contents.append(format_business_framework_analysis("porter", porter_res))
            if "bcg" in selected_frameworks:
                bcg_res = analyze_with_bcg(prompt)
                framework_contents.append(format_business_framework_analysis("bcg", bcg_res))

            if framework_contents:
                user_content += "\n\n## ๊ฒฝ์˜ ํ”„๋ ˆ์ž„์›Œํฌ ๋ถ„์„ ๊ฒฐ๊ณผ\n\n" + "\n\n".join(framework_contents)

            user_content += f"\n\n## ์˜์‚ฌ ๊ฒฐ์ • ๋งคํŠธ๋ฆญ์Šค ๋ถ„์„{purpose_info}\n{combos_table}"

            status.update(label="Generating ideasโ€ฆ")
            api_messages = [
                {"role": "system", "content": sys_prompt},
                {"role": "system", "name": "category_db", "content": category_context(selected_cat)},
                {"role": "user",   "content": user_content},
            ]
            stream = client.chat.completions.create(
                model="gpt-4.1-mini",
                messages=api_messages,
                temperature=1,
                max_tokens=MAX_TOKENS,
                top_p=1,
                stream=True
            )

            for chunk in stream:
                if chunk.choices and chunk.choices[0].delta.content:
                    full_response += chunk.choices[0].delta.content
                    stream_placeholder.markdown(full_response + "โ–Œ")

            stream_placeholder.markdown(full_response)
            status.update(label="Ideas created!", state="complete")

            # ์ด๋ฏธ์ง€ ์ƒ์„ฑ
            img_data = img_caption = None
            if st.session_state.generate_image and full_response:
                match = re.search(r"###\s*์ด๋ฏธ์ง€\s*ํ”„๋กฌํ”„ํŠธ\s*\n+([^\n]+)", full_response, re.I)
                if not match:
                    match = re.search(r"Image\s+Prompt\s*[:\-]\s*([^\n]+)", full_response, re.I)
                if match:
                    raw_prompt = re.sub(r'[\r\n"\'\\]', " ", match.group(1)).strip()
                    with st.spinner("์•„์ด๋””์–ด ์ด๋ฏธ์ง€ ์ƒ์„ฑ ์ค‘โ€ฆ"):
                        img_data, img_caption = generate_image(raw_prompt)
                    if img_data:
                        st.image(img_data, caption=f"์•„์ด๋””์–ด ์‹œ๊ฐํ™” โ€“ {img_caption}")

            answer_msg = {"role": "assistant", "content": full_response}
            if img_data:
                answer_msg["image"]         = img_data
                answer_msg["image_caption"] = img_caption
            st.session_state["_skip_dup_idx"] = len(st.session_state.messages)
            st.session_state.messages.append(answer_msg)

            # ๋‹ค์šด๋กœ๋“œ ๋ฒ„ํŠผ
            st.subheader("Download This Output")
            col_md, col_html = st.columns(2)
            col_md.download_button(
                "Markdown",
                data=full_response,
                file_name=f"{prompt[:30]}.md",
                mime="text/markdown"
            )
            col_html.download_button(
                "HTML",
                data=md_to_html(full_response, prompt[:30]),
                file_name=f"{prompt[:30]}.html",
                mime="text/html"
            )

            if st.session_state.auto_save:
                fn = f"chat_history_auto_{datetime.now():%Y%m%d_%H%M%S}.json"
                with open(fn, "w", encoding="utf-8") as fp:
                    json.dump(st.session_state.messages, fp, ensure_ascii=False, indent=2)

        except Exception as e:
            logging.error("process_input error", exc_info=True)
            st.error(f"โš ๏ธ ์ž‘์—… ์ค‘ ์˜ค๋ฅ˜๊ฐ€ ๋ฐœ์ƒํ–ˆ์Šต๋‹ˆ๋‹ค: {e}")
            st.session_state.messages.append(
                {"role": "assistant", "content": f"โš ๏ธ ์˜ค๋ฅ˜: {e}"}
            )

def main():
    idea_generator_app()

if __name__ == "__main__":
    main()