Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -7,6 +7,7 @@ from PIL import Image
|
|
7 |
import io
|
8 |
import base64, os
|
9 |
from huggingface_hub import snapshot_download
|
|
|
10 |
|
11 |
# Import μ νΈλ¦¬ν° ν¨μλ€
|
12 |
from util.utils import check_ocr_box, get_yolo_model, get_caption_model_processor, get_som_labeled_img
|
@@ -15,28 +16,50 @@ from util.utils import check_ocr_box, get_yolo_model, get_caption_model_processo
|
|
15 |
repo_id = "microsoft/OmniParser-v2.0" # HF repository ID
|
16 |
local_dir = "weights" # Local directory for weights
|
17 |
|
18 |
-
|
19 |
-
|
|
|
|
|
|
|
|
|
20 |
|
21 |
-
# Load models
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
# Markdown header text
|
28 |
MARKDOWN = """
|
29 |
# OmniParser V2 Proπ₯
|
|
|
|
|
|
|
|
|
|
|
30 |
"""
|
31 |
|
32 |
-
DEVICE = torch.device('cuda')
|
|
|
33 |
|
34 |
# Custom CSS for UI enhancement
|
35 |
custom_css = """
|
36 |
body { background-color: #f0f2f5; }
|
37 |
-
.gradio-container { font-family: 'Segoe UI', sans-serif; }
|
38 |
h1, h2, h3, h4 { color: #283E51; }
|
39 |
-
button { border-radius: 6px; }
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
"""
|
41 |
|
42 |
@spaces.GPU
|
@@ -47,14 +70,22 @@ def process(
|
|
47 |
iou_threshold,
|
48 |
use_paddleocr,
|
49 |
imgsz
|
50 |
-
) ->
|
51 |
-
|
|
|
|
|
52 |
if image_input is None:
|
53 |
-
return None, "Please upload an image for processing."
|
54 |
|
55 |
try:
|
|
|
|
|
|
|
|
|
56 |
# Calculate overlay ratio based on input image width
|
57 |
-
|
|
|
|
|
58 |
draw_bbox_config = {
|
59 |
'text_scale': 0.8 * box_overlay_ratio,
|
60 |
'text_thickness': max(int(2 * box_overlay_ratio), 1),
|
@@ -62,94 +93,170 @@ def process(
|
|
62 |
'thickness': max(int(3 * box_overlay_ratio), 1),
|
63 |
}
|
64 |
|
65 |
-
# Run OCR bounding box detection
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
# Get labeled image and parsed content via SOM (YOLO + caption model)
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
# Decode processed image from base64
|
91 |
-
|
92 |
-
|
|
|
|
|
|
|
|
|
93 |
|
94 |
# Format parsed content list into a multi-line string
|
95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
return image, parsed_text
|
|
|
97 |
except Exception as e:
|
98 |
-
|
99 |
-
|
|
|
|
|
100 |
|
101 |
# Build Gradio UI with enhanced layout and functionality
|
102 |
-
with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as demo:
|
103 |
gr.Markdown(MARKDOWN)
|
104 |
|
105 |
with gr.Row():
|
106 |
-
#
|
107 |
with gr.Column(scale=1):
|
108 |
-
with gr.Accordion("Upload Image & Settings", open=True):
|
109 |
image_input_component = gr.Image(
|
110 |
type='pil',
|
111 |
-
label='Upload Image',
|
112 |
elem_id="input_image"
|
113 |
)
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
submit_button_component = gr.Button(
|
135 |
-
value='Process Image',
|
|
|
|
|
136 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
|
138 |
-
#
|
139 |
with gr.Column(scale=2):
|
140 |
with gr.Tabs():
|
141 |
-
with gr.Tab("
|
142 |
image_output_component = gr.Image(
|
143 |
-
type='pil',
|
|
|
|
|
144 |
)
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
)
|
|
|
|
|
|
|
151 |
|
152 |
-
#
|
153 |
submit_button_component.click(
|
154 |
fn=process,
|
155 |
inputs=[
|
@@ -159,8 +266,39 @@ with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as demo:
|
|
159 |
use_paddleocr_component,
|
160 |
imgsz_component
|
161 |
],
|
162 |
-
outputs=[image_output_component, text_output_component]
|
|
|
163 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
164 |
|
165 |
-
# Launch with queue support
|
166 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
import io
|
8 |
import base64, os
|
9 |
from huggingface_hub import snapshot_download
|
10 |
+
import traceback
|
11 |
|
12 |
# Import μ νΈλ¦¬ν° ν¨μλ€
|
13 |
from util.utils import check_ocr_box, get_yolo_model, get_caption_model_processor, get_som_labeled_img
|
|
|
16 |
repo_id = "microsoft/OmniParser-v2.0" # HF repository ID
|
17 |
local_dir = "weights" # Local directory for weights
|
18 |
|
19 |
+
# Check if weights already exist to avoid re-downloading
|
20 |
+
if not os.path.exists(local_dir):
|
21 |
+
snapshot_download(repo_id=repo_id, local_dir=local_dir)
|
22 |
+
print(f"Repository downloaded to: {local_dir}")
|
23 |
+
else:
|
24 |
+
print(f"Weights already exist at: {local_dir}")
|
25 |
|
26 |
+
# Load models with error handling
|
27 |
+
try:
|
28 |
+
yolo_model = get_yolo_model(model_path='weights/icon_detect/model.pt')
|
29 |
+
caption_model_processor = get_caption_model_processor(
|
30 |
+
model_name="florence2",
|
31 |
+
model_name_or_path="weights/icon_caption"
|
32 |
+
)
|
33 |
+
print("Models loaded successfully")
|
34 |
+
except Exception as e:
|
35 |
+
print(f"Error loading models: {e}")
|
36 |
+
raise
|
37 |
|
38 |
# Markdown header text
|
39 |
MARKDOWN = """
|
40 |
# OmniParser V2 Proπ₯
|
41 |
+
|
42 |
+
<div style="background-color: #f0f8ff; padding: 15px; border-radius: 10px; margin-bottom: 20px;">
|
43 |
+
<p style="margin: 0;">π― <strong>AI-powered screen understanding tool</strong> that detects UI elements and extracts text with high accuracy.</p>
|
44 |
+
<p style="margin: 5px 0 0 0;">π Supports both PaddleOCR and EasyOCR for flexible text extraction.</p>
|
45 |
+
</div>
|
46 |
"""
|
47 |
|
48 |
+
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
49 |
+
print(f"Using device: {DEVICE}")
|
50 |
|
51 |
# Custom CSS for UI enhancement
|
52 |
custom_css = """
|
53 |
body { background-color: #f0f2f5; }
|
54 |
+
.gradio-container { font-family: 'Segoe UI', sans-serif; max-width: 1400px; margin: auto; }
|
55 |
h1, h2, h3, h4 { color: #283E51; }
|
56 |
+
button { border-radius: 6px; transition: all 0.3s ease; }
|
57 |
+
button:hover { transform: translateY(-2px); box-shadow: 0 4px 12px rgba(0,0,0,0.15); }
|
58 |
+
.output-image { border: 2px solid #e1e4e8; border-radius: 8px; }
|
59 |
+
#input_image { border: 2px dashed #4a90e2; border-radius: 8px; }
|
60 |
+
#input_image:hover { border-color: #2c5aa0; }
|
61 |
+
.gr-box { border-radius: 8px; }
|
62 |
+
.gr-padded { padding: 16px; }
|
63 |
"""
|
64 |
|
65 |
@spaces.GPU
|
|
|
70 |
iou_threshold,
|
71 |
use_paddleocr,
|
72 |
imgsz
|
73 |
+
) -> tuple:
|
74 |
+
"""Process image with error handling and validation"""
|
75 |
+
|
76 |
+
# Input validation
|
77 |
if image_input is None:
|
78 |
+
return None, "β οΈ Please upload an image for processing."
|
79 |
|
80 |
try:
|
81 |
+
# Log processing parameters
|
82 |
+
print(f"Processing with parameters: box_threshold={box_threshold}, "
|
83 |
+
f"iou_threshold={iou_threshold}, use_paddleocr={use_paddleocr}, imgsz={imgsz}")
|
84 |
+
|
85 |
# Calculate overlay ratio based on input image width
|
86 |
+
image_width = image_input.size[0]
|
87 |
+
box_overlay_ratio = max(0.5, min(2.0, image_width / 3200)) # Clamp ratio between 0.5 and 2.0
|
88 |
+
|
89 |
draw_bbox_config = {
|
90 |
'text_scale': 0.8 * box_overlay_ratio,
|
91 |
'text_thickness': max(int(2 * box_overlay_ratio), 1),
|
|
|
93 |
'thickness': max(int(3 * box_overlay_ratio), 1),
|
94 |
}
|
95 |
|
96 |
+
# Run OCR bounding box detection with error handling
|
97 |
+
try:
|
98 |
+
ocr_bbox_rslt, is_goal_filtered = check_ocr_box(
|
99 |
+
image_input,
|
100 |
+
display_img=False,
|
101 |
+
output_bb_format='xyxy',
|
102 |
+
goal_filtering=None,
|
103 |
+
easyocr_args={'paragraph': False, 'text_threshold': 0.9},
|
104 |
+
use_paddleocr=use_paddleocr
|
105 |
+
)
|
106 |
+
|
107 |
+
# Handle None result from OCR
|
108 |
+
if ocr_bbox_rslt is None:
|
109 |
+
print("OCR returned None, using empty results")
|
110 |
+
text, ocr_bbox = [], []
|
111 |
+
else:
|
112 |
+
text, ocr_bbox = ocr_bbox_rslt
|
113 |
+
|
114 |
+
# Validate OCR results
|
115 |
+
if text is None:
|
116 |
+
text = []
|
117 |
+
if ocr_bbox is None:
|
118 |
+
ocr_bbox = []
|
119 |
+
|
120 |
+
print(f"OCR found {len(text)} text regions")
|
121 |
+
|
122 |
+
except Exception as e:
|
123 |
+
print(f"OCR error: {e}, continuing with empty OCR results")
|
124 |
+
text, ocr_bbox = [], []
|
125 |
|
126 |
# Get labeled image and parsed content via SOM (YOLO + caption model)
|
127 |
+
try:
|
128 |
+
dino_labled_img, label_coordinates, parsed_content_list = get_som_labeled_img(
|
129 |
+
image_input,
|
130 |
+
yolo_model,
|
131 |
+
BOX_TRESHOLD=box_threshold,
|
132 |
+
output_coord_in_ratio=True,
|
133 |
+
ocr_bbox=ocr_bbox if ocr_bbox else [], # Ensure it's never None
|
134 |
+
draw_bbox_config=draw_bbox_config,
|
135 |
+
caption_model_processor=caption_model_processor,
|
136 |
+
ocr_text=text if text else [], # Ensure it's never None
|
137 |
+
iou_threshold=iou_threshold,
|
138 |
+
imgsz=imgsz
|
139 |
+
)
|
140 |
+
|
141 |
+
if dino_labled_img is None:
|
142 |
+
raise ValueError("Failed to generate labeled image")
|
143 |
+
|
144 |
+
except Exception as e:
|
145 |
+
print(f"Error in SOM processing: {e}")
|
146 |
+
# Return original image with error message if SOM fails
|
147 |
+
return image_input, f"β οΈ Error during element detection: {str(e)}"
|
148 |
|
149 |
# Decode processed image from base64
|
150 |
+
try:
|
151 |
+
image = Image.open(io.BytesIO(base64.b64decode(dino_labled_img)))
|
152 |
+
print('Successfully decoded processed image')
|
153 |
+
except Exception as e:
|
154 |
+
print(f"Error decoding image: {e}")
|
155 |
+
return image_input, f"β οΈ Error decoding processed image: {str(e)}"
|
156 |
|
157 |
# Format parsed content list into a multi-line string
|
158 |
+
if parsed_content_list and len(parsed_content_list) > 0:
|
159 |
+
parsed_text = "π― **Detected Elements:**\n\n"
|
160 |
+
for i, v in enumerate(parsed_content_list):
|
161 |
+
if v: # Only add non-empty content
|
162 |
+
parsed_text += f"**Icon {i}:** {v}\n"
|
163 |
+
else:
|
164 |
+
parsed_text = "βΉοΈ No UI elements detected. Try adjusting the detection thresholds."
|
165 |
+
|
166 |
+
print(f'Finished processing image. Found {len(parsed_content_list)} elements.')
|
167 |
return image, parsed_text
|
168 |
+
|
169 |
except Exception as e:
|
170 |
+
error_msg = f"β οΈ Unexpected error: {str(e)}"
|
171 |
+
print(f"Error during processing: {e}")
|
172 |
+
print(traceback.format_exc())
|
173 |
+
return None, error_msg
|
174 |
|
175 |
# Build Gradio UI with enhanced layout and functionality
|
176 |
+
with gr.Blocks(css=custom_css, theme=gr.themes.Soft(), title="OmniParser V2 Pro") as demo:
|
177 |
gr.Markdown(MARKDOWN)
|
178 |
|
179 |
with gr.Row():
|
180 |
+
# Left sidebar: Upload and settings
|
181 |
with gr.Column(scale=1):
|
182 |
+
with gr.Accordion("π€ Upload Image & Settings", open=True):
|
183 |
image_input_component = gr.Image(
|
184 |
type='pil',
|
185 |
+
label='Upload Screenshot/UI Image',
|
186 |
elem_id="input_image"
|
187 |
)
|
188 |
+
|
189 |
+
gr.Markdown("### ποΈ Detection Settings")
|
190 |
+
|
191 |
+
with gr.Group():
|
192 |
+
box_threshold_component = gr.Slider(
|
193 |
+
label='π Box Threshold',
|
194 |
+
minimum=0.01,
|
195 |
+
maximum=1.0,
|
196 |
+
step=0.01,
|
197 |
+
value=0.05,
|
198 |
+
info="Lower values detect more elements (may include false positives)"
|
199 |
+
)
|
200 |
+
|
201 |
+
iou_threshold_component = gr.Slider(
|
202 |
+
label='π² IOU Threshold',
|
203 |
+
minimum=0.01,
|
204 |
+
maximum=1.0,
|
205 |
+
step=0.01,
|
206 |
+
value=0.1,
|
207 |
+
info="Controls overlap filtering (lower = less filtering)"
|
208 |
+
)
|
209 |
+
|
210 |
+
use_paddleocr_component = gr.Checkbox(
|
211 |
+
label='π€ Use PaddleOCR',
|
212 |
+
value=True,
|
213 |
+
info="β PaddleOCR (faster) | β EasyOCR (more languages)"
|
214 |
+
)
|
215 |
+
|
216 |
+
imgsz_component = gr.Slider(
|
217 |
+
label='π Detection Image Size',
|
218 |
+
minimum=640,
|
219 |
+
maximum=1920,
|
220 |
+
step=32,
|
221 |
+
value=640,
|
222 |
+
info="Higher = better accuracy but slower (640 recommended)"
|
223 |
+
)
|
224 |
+
|
225 |
submit_button_component = gr.Button(
|
226 |
+
value='π Process Image',
|
227 |
+
variant='primary',
|
228 |
+
size='lg'
|
229 |
)
|
230 |
+
|
231 |
+
# Add examples section
|
232 |
+
gr.Markdown("### π‘ Quick Tips")
|
233 |
+
gr.Markdown("""
|
234 |
+
- **For mobile apps:** Use default settings
|
235 |
+
- **For desktop apps:** Try image size 1280
|
236 |
+
- **For complex UIs:** Lower box threshold to 0.03
|
237 |
+
- **Too many boxes?** Increase IOU threshold
|
238 |
+
""")
|
239 |
|
240 |
+
# Right main area: Results tabs
|
241 |
with gr.Column(scale=2):
|
242 |
with gr.Tabs():
|
243 |
+
with gr.Tab("πΌοΈ Annotated Image"):
|
244 |
image_output_component = gr.Image(
|
245 |
+
type='pil',
|
246 |
+
label='Processed Image with Annotations',
|
247 |
+
elem_classes=["output-image"]
|
248 |
)
|
249 |
+
|
250 |
+
with gr.Tab("π Extracted Elements"):
|
251 |
+
text_output_component = gr.Markdown(
|
252 |
+
value="*Parsed elements will appear here after processing...*",
|
253 |
+
elem_classes=["parsed-text"]
|
254 |
)
|
255 |
+
|
256 |
+
# Add status indicator
|
257 |
+
status_text = gr.Markdown("", visible=True)
|
258 |
|
259 |
+
# Button click event with loading spinner
|
260 |
submit_button_component.click(
|
261 |
fn=process,
|
262 |
inputs=[
|
|
|
266 |
use_paddleocr_component,
|
267 |
imgsz_component
|
268 |
],
|
269 |
+
outputs=[image_output_component, text_output_component],
|
270 |
+
show_progress=True
|
271 |
)
|
272 |
+
|
273 |
+
# Add sample images if available
|
274 |
+
if os.path.exists("samples"):
|
275 |
+
gr.Examples(
|
276 |
+
examples=[
|
277 |
+
["samples/mobile_app.png", 0.05, 0.1, True, 640],
|
278 |
+
["samples/desktop_app.png", 0.05, 0.1, True, 1280],
|
279 |
+
],
|
280 |
+
inputs=[
|
281 |
+
image_input_component,
|
282 |
+
box_threshold_component,
|
283 |
+
iou_threshold_component,
|
284 |
+
use_paddleocr_component,
|
285 |
+
imgsz_component
|
286 |
+
],
|
287 |
+
outputs=[image_output_component, text_output_component],
|
288 |
+
fn=process,
|
289 |
+
cache_examples=False
|
290 |
+
)
|
291 |
|
292 |
+
# Launch with queue support and error handling
|
293 |
+
if __name__ == "__main__":
|
294 |
+
try:
|
295 |
+
demo.queue(max_size=10)
|
296 |
+
demo.launch(
|
297 |
+
share=False,
|
298 |
+
show_error=True,
|
299 |
+
server_name="0.0.0.0",
|
300 |
+
server_port=7860
|
301 |
+
)
|
302 |
+
except Exception as e:
|
303 |
+
print(f"Failed to launch app: {e}")
|
304 |
+
raise
|