ginipick's picture
Update app.py
a3e6550 verified
raw
history blame
17.9 kB
from typing import Optional
import spaces
import gradio as gr
import numpy as np
import torch
from PIL import Image
import io
import base64, os
from huggingface_hub import snapshot_download
import traceback
import warnings
import sys
# Suppress specific warnings
warnings.filterwarnings("ignore", category=FutureWarning)
warnings.filterwarnings("ignore", message=".*_supports_sdpa.*")
# CRITICAL: Fix Florence2 model before any imports
def fix_florence2_import():
"""Pre-patch the Florence2 model class before it's imported"""
import importlib.util
import types
# Create a custom import hook
class Florence2ImportHook:
def find_spec(self, fullname, path, target=None):
if "florence2" in fullname.lower() or "modeling_florence2" in fullname:
return importlib.util.spec_from_loader(fullname, Florence2Loader())
return None
class Florence2Loader:
def create_module(self, spec):
return None
def exec_module(self, module):
# Load the original module
import importlib.machinery
import importlib.util
# Find the actual florence2 module
for path in sys.path:
florence_path = os.path.join(path, "modeling_florence2.py")
if os.path.exists(florence_path):
spec = importlib.util.spec_from_file_location("modeling_florence2", florence_path)
if spec and spec.loader:
spec.loader.exec_module(module)
# Patch the module after loading
if hasattr(module, 'Florence2ForConditionalGeneration'):
original_init = module.Florence2ForConditionalGeneration.__init__
def patched_init(self, config):
# Add the missing attribute before calling super().__init__
self._supports_sdpa = False
original_init(self, config)
module.Florence2ForConditionalGeneration.__init__ = patched_init
module.Florence2ForConditionalGeneration._supports_sdpa = False
break
# Install the import hook
hook = Florence2ImportHook()
sys.meta_path.insert(0, hook)
# Apply the fix before any model imports
try:
fix_florence2_import()
except Exception as e:
print(f"Warning: Could not apply import hook: {e}")
# Alternative fix: Monkey-patch transformers before importing utils
def monkey_patch_transformers():
"""Monkey patch transformers to handle _supports_sdpa"""
try:
import transformers.modeling_utils as modeling_utils
original_check = modeling_utils.PreTrainedModel._check_and_adjust_attn_implementation
def patched_check(self, *args, **kwargs):
# Add the attribute if missing
if not hasattr(self, '_supports_sdpa'):
self._supports_sdpa = False
try:
return original_check(self, *args, **kwargs)
except AttributeError as e:
if '_supports_sdpa' in str(e):
# Return a safe default
return "eager"
raise
modeling_utils.PreTrainedModel._check_and_adjust_attn_implementation = patched_check
# Also patch the getter
original_getattr = modeling_utils.PreTrainedModel.__getattribute__
def patched_getattr(self, name):
if name == '_supports_sdpa' and not hasattr(self, '_supports_sdpa'):
return False
return original_getattr(self, name)
modeling_utils.PreTrainedModel.__getattribute__ = patched_getattr
print("Successfully patched transformers for Florence2 compatibility")
except Exception as e:
print(f"Warning: Could not patch transformers: {e}")
# Apply the monkey patch
monkey_patch_transformers()
# Now import the utils after patching
from util.utils import check_ocr_box, get_yolo_model, get_som_labeled_img
# Download repository (if not already downloaded)
repo_id = "microsoft/OmniParser-v2.0"
local_dir = "weights"
if not os.path.exists(local_dir):
snapshot_download(repo_id=repo_id, local_dir=local_dir)
print(f"Repository downloaded to: {local_dir}")
else:
print(f"Weights already exist at: {local_dir}")
# Custom function to load caption model with proper error handling
def load_caption_model_safe(model_name="florence2", model_name_or_path="weights/icon_caption"):
"""Safely load caption model with multiple fallback methods"""
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
try:
# Method 1: Try the original function with patching
from util.utils import get_caption_model_processor
return get_caption_model_processor(model_name, model_name_or_path)
except AttributeError as e:
if '_supports_sdpa' in str(e):
print(f"SDPA error detected, trying alternative loading method...")
else:
raise
# Method 2: Load directly with specific configuration
try:
from transformers import AutoProcessor, AutoModelForCausalLM
print(f"Loading caption model from {model_name_or_path} with alternative method...")
# Load processor
processor = AutoProcessor.from_pretrained(
model_name_or_path,
trust_remote_code=True,
revision="main"
)
# Try to load model with different configurations
configs_to_try = [
{"attn_implementation": "eager", "use_cache": False},
{"use_flash_attention_2": False, "use_cache": False},
{"torch_dtype": torch.float32}, # Try float32 instead of float16
]
model = None
for config in configs_to_try:
try:
model = AutoModelForCausalLM.from_pretrained(
model_name_or_path,
trust_remote_code=True,
device_map="auto" if torch.cuda.is_available() else None,
**config
)
# Ensure the attribute exists
if not hasattr(model, '_supports_sdpa'):
model._supports_sdpa = False
print(f"Model loaded successfully with config: {config}")
break
except Exception as e:
print(f"Failed with config {config}: {e}")
continue
if model is None:
raise RuntimeError("Could not load model with any configuration")
# Move to device if needed
if device.type == 'cuda' and not next(model.parameters()).is_cuda:
model = model.to(device)
return {'model': model, 'processor': processor}
except Exception as e:
print(f"Error in alternative loading: {e}")
raise
# Load models
try:
print("Loading YOLO model...")
yolo_model = get_yolo_model(model_path='weights/icon_detect/model.pt')
print("YOLO model loaded successfully")
print("Loading caption model...")
caption_model_processor = load_caption_model_safe()
print("Caption model loaded successfully")
except Exception as e:
print(f"Critical error loading models: {e}")
print(traceback.format_exc())
caption_model_processor = None
# Don't raise here, let the UI handle it
# Markdown header text
MARKDOWN = """
# OmniParser V2 ProπŸ”₯
<div style="background-color: #f0f8ff; padding: 15px; border-radius: 10px; margin-bottom: 20px;">
<p style="margin: 0;">🎯 <strong>AI-powered screen understanding tool</strong> that detects UI elements and extracts text with high accuracy.</p>
<p style="margin: 5px 0 0 0;">πŸ“ Supports both PaddleOCR and EasyOCR for flexible text extraction.</p>
</div>
"""
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(f"Using device: {DEVICE}")
# Custom CSS for UI enhancement
custom_css = """
body { background-color: #f0f2f5; }
.gradio-container { font-family: 'Segoe UI', sans-serif; max-width: 1400px; margin: auto; }
h1, h2, h3, h4 { color: #283E51; }
button { border-radius: 6px; transition: all 0.3s ease; }
button:hover { transform: translateY(-2px); box-shadow: 0 4px 12px rgba(0,0,0,0.15); }
.output-image { border: 2px solid #e1e4e8; border-radius: 8px; }
#input_image { border: 2px dashed #4a90e2; border-radius: 8px; }
#input_image:hover { border-color: #2c5aa0; }
.gr-box { border-radius: 8px; }
.gr-padded { padding: 16px; }
"""
@spaces.GPU
@torch.inference_mode()
def process(
image_input,
box_threshold,
iou_threshold,
use_paddleocr,
imgsz
) -> tuple:
"""Process image with error handling and validation"""
# Input validation
if image_input is None:
return None, "⚠️ Please upload an image for processing."
# Check if caption model is loaded
if caption_model_processor is None:
return None, "⚠️ Caption model not loaded. There was an error during initialization. Please check the logs."
try:
# Log processing parameters
print(f"Processing with parameters: box_threshold={box_threshold}, "
f"iou_threshold={iou_threshold}, use_paddleocr={use_paddleocr}, imgsz={imgsz}")
# Calculate overlay ratio based on input image width
image_width = image_input.size[0]
box_overlay_ratio = max(0.5, min(2.0, image_width / 3200))
draw_bbox_config = {
'text_scale': 0.8 * box_overlay_ratio,
'text_thickness': max(int(2 * box_overlay_ratio), 1),
'text_padding': max(int(3 * box_overlay_ratio), 1),
'thickness': max(int(3 * box_overlay_ratio), 1),
}
# Run OCR bounding box detection
try:
ocr_bbox_rslt, is_goal_filtered = check_ocr_box(
image_input,
display_img=False,
output_bb_format='xyxy',
goal_filtering=None,
easyocr_args={'paragraph': False, 'text_threshold': 0.9},
use_paddleocr=use_paddleocr
)
# Handle None result from OCR
if ocr_bbox_rslt is None:
print("OCR returned None, using empty results")
text, ocr_bbox = [], []
else:
text, ocr_bbox = ocr_bbox_rslt
# Validate OCR results
if text is None:
text = []
if ocr_bbox is None:
ocr_bbox = []
print(f"OCR found {len(text)} text regions")
except Exception as e:
print(f"OCR error: {e}, continuing with empty OCR results")
text, ocr_bbox = [], []
# Get labeled image and parsed content
try:
# Ensure the model has the required attribute
if isinstance(caption_model_processor, dict) and 'model' in caption_model_processor:
model = caption_model_processor['model']
if not hasattr(model, '_supports_sdpa'):
model._supports_sdpa = False
dino_labled_img, label_coordinates, parsed_content_list = get_som_labeled_img(
image_input,
yolo_model,
BOX_TRESHOLD=box_threshold,
output_coord_in_ratio=True,
ocr_bbox=ocr_bbox if ocr_bbox else [],
draw_bbox_config=draw_bbox_config,
caption_model_processor=caption_model_processor,
ocr_text=text if text else [],
iou_threshold=iou_threshold,
imgsz=imgsz
)
if dino_labled_img is None:
raise ValueError("Failed to generate labeled image")
except Exception as e:
print(f"Error in SOM processing: {e}")
print(traceback.format_exc())
return image_input, f"⚠️ Error during element detection: {str(e)}"
# Decode processed image from base64
try:
image = Image.open(io.BytesIO(base64.b64decode(dino_labled_img)))
print('Successfully decoded processed image')
except Exception as e:
print(f"Error decoding image: {e}")
return image_input, f"⚠️ Error decoding processed image: {str(e)}"
# Format parsed content list
if parsed_content_list and len(parsed_content_list) > 0:
parsed_text = "🎯 **Detected Elements:**\n\n"
for i, v in enumerate(parsed_content_list):
if v: # Only add non-empty content
parsed_text += f"**Icon {i}:** {v}\n"
else:
parsed_text = "ℹ️ No UI elements detected. Try adjusting the detection thresholds."
print(f'Finished processing image. Found {len(parsed_content_list)} elements.')
return image, parsed_text
except Exception as e:
error_msg = f"⚠️ Unexpected error: {str(e)}"
print(f"Error during processing: {e}")
print(traceback.format_exc())
return None, error_msg
# Build Gradio UI
with gr.Blocks(css=custom_css, theme=gr.themes.Soft(), title="OmniParser V2 Pro") as demo:
gr.Markdown(MARKDOWN)
# Check if models loaded successfully
if caption_model_processor is None:
gr.Markdown("### ⚠️ Warning: Caption model failed to load. Some features may not work.")
with gr.Row():
# Left sidebar: Upload and settings
with gr.Column(scale=1):
with gr.Accordion("πŸ“€ Upload Image & Settings", open=True):
image_input_component = gr.Image(
type='pil',
label='Upload Screenshot/UI Image',
elem_id="input_image"
)
gr.Markdown("### πŸŽ›οΈ Detection Settings")
with gr.Group():
box_threshold_component = gr.Slider(
label='πŸ“Š Box Threshold',
minimum=0.01,
maximum=1.0,
step=0.01,
value=0.05,
info="Lower values detect more elements"
)
iou_threshold_component = gr.Slider(
label='πŸ”² IOU Threshold',
minimum=0.01,
maximum=1.0,
step=0.01,
value=0.1,
info="Controls overlap filtering"
)
use_paddleocr_component = gr.Checkbox(
label='πŸ”€ Use PaddleOCR',
value=True,
info="βœ“ PaddleOCR | βœ— EasyOCR"
)
imgsz_component = gr.Slider(
label='πŸ“ Detection Image Size',
minimum=640,
maximum=1920,
step=32,
value=640,
info="Higher = better accuracy but slower"
)
submit_button_component = gr.Button(
value='πŸš€ Process Image',
variant='primary',
size='lg'
)
gr.Markdown("### πŸ’‘ Quick Tips")
gr.Markdown("""
- **Mobile apps:** Use default settings
- **Desktop apps:** Try image size 1280
- **Complex UIs:** Lower box threshold to 0.03
- **Too many boxes:** Increase IOU threshold
""")
# Right main area: Results tabs
with gr.Column(scale=2):
with gr.Tabs():
with gr.Tab("πŸ–ΌοΈ Annotated Image"):
image_output_component = gr.Image(
type='pil',
label='Processed Image with Annotations',
elem_classes=["output-image"]
)
with gr.Tab("πŸ“ Extracted Elements"):
text_output_component = gr.Markdown(
value="*Parsed elements will appear here after processing...*",
elem_classes=["parsed-text"]
)
# Button click event
submit_button_component.click(
fn=process,
inputs=[
image_input_component,
box_threshold_component,
iou_threshold_component,
use_paddleocr_component,
imgsz_component
],
outputs=[image_output_component, text_output_component],
show_progress=True
)
# Launch with queue support
if __name__ == "__main__":
try:
# Set environment variables
os.environ['TRANSFORMERS_OFFLINE'] = '0'
os.environ['HF_HUB_OFFLINE'] = '0'
demo.queue(max_size=10)
demo.launch(
share=False,
show_error=True,
server_name="0.0.0.0",
server_port=7860
)
except Exception as e:
print(f"Failed to launch app: {e}")
print(traceback.format_exc())