import gradio as gr from transformers import AutoTokenizer, AutoModelForCausalLM import torch import spaces # 加载模型和分词器 model_name = "XiaomiMiMo/MiMo-7B-RL" tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.float16, device_map="auto", trust_remote_code=True ) @spaces.GPU(duration=120) def predict(message, history): # 构建输入 history_text = "" for human, assistant in history: history_text += f"Human: {human}\nAssistant: {assistant}\n" prompt = f"{history_text}Human: {message}\nAssistant:" # 生成回复 inputs = tokenizer(prompt, return_tensors="pt").to(model.device) # 使用流式生成 streamer = tokenizer.decode response = "" for outputs in model.generate( **inputs, max_new_tokens=10000, do_sample=True, temperature=0.7, top_p=0.9, repetition_penalty=1.1, pad_token_id=tokenizer.eos_token_id, stream_output=True ): next_token = outputs[0][inputs.input_ids.shape[1]:] next_token_text = streamer(next_token, skip_special_tokens=True) response += next_token_text yield response.strip() # 创建Gradio界面 demo = gr.ChatInterface( predict, title="MiMo-7B-RL 聊天机器人", description="这是一个基于小米 MiMo-7B-RL 模型的聊天机器人。", examples=["你好!", "请介绍一下你自己", "你能做什么?"], theme=gr.themes.Soft() ) if __name__ == "__main__": demo.launch(share=True)