Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,48 +1,259 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
import torch
|
|
|
|
|
|
|
|
|
|
|
4 |
import spaces
|
5 |
|
6 |
-
#
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
@spaces.GPU()
|
16 |
def predict(message, history):
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
history_text = ""
|
19 |
-
|
20 |
-
|
|
|
|
|
|
|
|
|
21 |
prompt = f"{history_text}Human: {message}\nAssistant:"
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
return response.strip()
|
37 |
|
38 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
demo = gr.ChatInterface(
|
40 |
-
predict,
|
41 |
-
title="MiMo-7B-RL
|
42 |
-
description=
|
43 |
-
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
)
|
46 |
|
|
|
47 |
if __name__ == "__main__":
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
|
|
2 |
import torch
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
+
import gc
|
5 |
+
import os
|
6 |
+
import datetime
|
7 |
+
import time
|
8 |
import spaces
|
9 |
|
10 |
+
# --- μ€μ ---
|
11 |
+
MODEL_ID = "XiaomiMiMo/MiMo-7B-RL"
|
12 |
+
MAX_NEW_TOKENS = 512
|
13 |
+
CPU_THREAD_COUNT = 4 # νμμ μ‘°μ
|
14 |
+
|
15 |
+
# --- μ ν μ¬ν: CPU μ€λ λ μ€μ ---
|
16 |
+
# torch.set_num_threads(CPU_THREAD_COUNT)
|
17 |
+
# os.environ["OMP_NUM_THREADS"] = str(CPU_THREAD_COUNT)
|
18 |
+
# os.environ["MKL_NUM_THREADS"] = str(CPU_THREAD_COUNT)
|
19 |
+
|
20 |
+
print("--- νκ²½ μ€μ ---")
|
21 |
+
print(f"PyTorch λ²μ : {torch.__version__}")
|
22 |
+
print(f"μ€ν μ₯μΉ: {torch.device('cuda' if torch.cuda.is_available() else 'cpu')}")
|
23 |
+
print(f"Torch μ€λ λ: {torch.get_num_threads()}")
|
24 |
+
|
25 |
+
# --- λͺ¨λΈ λ° ν ν¬λμ΄μ λ‘λ© ---
|
26 |
+
print(f"--- λͺ¨λΈ λ‘λ© μ€: {MODEL_ID} ---")
|
27 |
+
print("첫 μ€ν μ λͺ λΆ μ λ μμλ μ μμ΅λλ€...")
|
28 |
+
|
29 |
+
model = None
|
30 |
+
tokenizer = None
|
31 |
+
load_successful = False
|
32 |
+
stop_token_ids_list = [] # stop_token_ids_list μ΄κΈ°ν
|
33 |
+
|
34 |
+
try:
|
35 |
+
start_load_time = time.time()
|
36 |
+
# μμμ λ°λΌ device_map μ€μ
|
37 |
+
device_map = "auto" if torch.cuda.is_available() else "cpu"
|
38 |
+
dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
39 |
+
|
40 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
41 |
+
MODEL_ID,
|
42 |
+
trust_remote_code=True
|
43 |
+
)
|
44 |
+
|
45 |
+
model = AutoModelForCausalLM.from_pretrained(
|
46 |
+
MODEL_ID,
|
47 |
+
torch_dtype=dtype,
|
48 |
+
device_map=device_map,
|
49 |
+
trust_remote_code=True
|
50 |
+
)
|
51 |
+
|
52 |
+
model.eval()
|
53 |
+
load_time = time.time() - start_load_time
|
54 |
+
print(f"--- λͺ¨λΈ λ° ν ν¬λμ΄μ λ‘λ© μλ£: {load_time:.2f}μ΄ μμ ---")
|
55 |
+
load_successful = True
|
56 |
+
|
57 |
+
# --- μ€μ§ ν ν° μ€μ ---
|
58 |
+
stop_token_strings = ["</s>", "<|endoftext|>"]
|
59 |
+
temp_stop_ids = [tokenizer.convert_tokens_to_ids(token) for token in stop_token_strings]
|
60 |
+
|
61 |
+
if tokenizer.eos_token_id is not None and tokenizer.eos_token_id not in temp_stop_ids:
|
62 |
+
temp_stop_ids.append(tokenizer.eos_token_id)
|
63 |
+
elif tokenizer.eos_token_id is None:
|
64 |
+
print("κ²½κ³ : tokenizer.eos_token_idκ° Noneμ
λλ€. μ€μ§ ν ν°μ μΆκ°ν μ μμ΅λλ€.")
|
65 |
+
|
66 |
+
stop_token_ids_list = [tid for tid in temp_stop_ids if tid is not None]
|
67 |
+
|
68 |
+
if not stop_token_ids_list:
|
69 |
+
print("κ²½κ³ : μ€μ§ ν ν° IDλ₯Ό μ°Ύμ μ μμ΅λλ€. κ°λ₯νλ©΄ κΈ°λ³Έ EOSλ₯Ό μ¬μ©νκ³ , κ·Έλ μ§ μμΌλ©΄ μμ±μ΄ μ¬λ°λ₯΄κ² μ€μ§λμ§ μμ μ μμ΅λλ€.")
|
70 |
+
if tokenizer.eos_token_id is not None:
|
71 |
+
stop_token_ids_list = [tokenizer.eos_token_id]
|
72 |
+
else:
|
73 |
+
print("μ€λ₯: κΈ°λ³Έ EOSλ₯Ό ν¬ν¨νμ¬ μ€μ§ ν ν°μ μ°Ύμ μ μμ΅λλ€. μμ±μ΄ 무νμ μ€νλ μ μμ΅λλ€.")
|
74 |
+
|
75 |
+
print(f"μ¬μ©ν μ€μ§ ν ν° ID: {stop_token_ids_list}")
|
76 |
+
|
77 |
+
except Exception as e:
|
78 |
+
print(f"!!! λͺ¨λΈ λ‘λ© μ€λ₯: {e}")
|
79 |
+
if 'model' in locals() and model is not None: del model
|
80 |
+
if 'tokenizer' in locals() and tokenizer is not None: del tokenizer
|
81 |
+
gc.collect()
|
82 |
+
raise gr.Error(f"λͺ¨λΈ {MODEL_ID} λ‘λ©μ μ€ν¨νμ΅λλ€. μ ν리μΌμ΄μ
μ μμν μ μμ΅λλ€. μ€λ₯: {e}")
|
83 |
+
|
84 |
+
# --- μμ€ν
ν둬ννΈ μ μ ---
|
85 |
+
def get_system_prompt():
|
86 |
+
current_date = datetime.datetime.now().strftime("%Y-%m-%d (%A)")
|
87 |
+
return (
|
88 |
+
f"- AI μΈμ΄λͺ¨λΈμ μ΄λ¦μ \"MiMo\"μ΄λ©° XiaomiMiMoμμ λ§λ€μμ΅λλ€.\n"
|
89 |
+
f"- μ€λμ {current_date}μ
λλ€.\n"
|
90 |
+
f"- μ¬μ©μμ μ§λ¬Έμ λν΄ μΉμ νκ³ μμΈνκ² νκ΅μ΄λ‘ λ΅λ³ν΄μΌ ν©λλ€."
|
91 |
+
)
|
92 |
+
|
93 |
+
# --- μμ
ν¨μ ---
|
94 |
+
def warmup_model():
|
95 |
+
if not load_successful or model is None or tokenizer is None:
|
96 |
+
print("μμ
건λλ°κΈ°: λͺ¨λΈμ΄ μ±κ³΅μ μΌλ‘ λ‘λλμ§ μμμ΅λλ€.")
|
97 |
+
return
|
98 |
+
|
99 |
+
print("--- λͺ¨λΈ μμ
μμ ---")
|
100 |
+
try:
|
101 |
+
start_warmup_time = time.time()
|
102 |
+
warmup_message = "μλ
νμΈμ"
|
103 |
+
|
104 |
+
# λͺ¨λΈμ λ§λ νμμΌλ‘ μ
λ ₯ ꡬμ±
|
105 |
+
system_prompt = get_system_prompt()
|
106 |
+
|
107 |
+
# MiMo λͺ¨λΈμ ν둬ννΈ νμμ λ§κ² μ‘°μ
|
108 |
+
prompt = f"Human: {warmup_message}\nAssistant:"
|
109 |
+
|
110 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
111 |
+
|
112 |
+
# μ€μ§ ν ν°μ΄ λΉμ΄ μλμ§ νμΈνκ³ μ μ ν μ²λ¦¬
|
113 |
+
gen_kwargs = {
|
114 |
+
"max_new_tokens": 10,
|
115 |
+
"pad_token_id": tokenizer.eos_token_id if tokenizer.eos_token_id is not None else tokenizer.pad_token_id,
|
116 |
+
"do_sample": False
|
117 |
+
}
|
118 |
+
|
119 |
+
if stop_token_ids_list:
|
120 |
+
gen_kwargs["eos_token_id"] = stop_token_ids_list
|
121 |
+
else:
|
122 |
+
print("μοΏ½οΏ½ κ²½κ³ : μμ±μ μ μλ μ€μ§ ν ν°μ΄ μμ΅λλ€.")
|
123 |
+
|
124 |
+
with torch.no_grad():
|
125 |
+
output_ids = model.generate(**inputs, **gen_kwargs)
|
126 |
+
|
127 |
+
del inputs
|
128 |
+
del output_ids
|
129 |
+
gc.collect()
|
130 |
+
warmup_time = time.time() - start_warmup_time
|
131 |
+
print(f"--- λͺ¨λΈ μμ
μλ£: {warmup_time:.2f}μ΄ μμ ---")
|
132 |
+
|
133 |
+
except Exception as e:
|
134 |
+
print(f"!!! λͺ¨λΈ μμ
μ€ μ€λ₯ λ°μ: {e}")
|
135 |
+
finally:
|
136 |
+
gc.collect()
|
137 |
+
|
138 |
+
# --- μΆλ‘ ν¨μ ---
|
139 |
@spaces.GPU()
|
140 |
def predict(message, history):
|
141 |
+
"""
|
142 |
+
XiaomiMiMo/MiMo-7B-RL λͺ¨λΈμ μ¬μ©νμ¬ μλ΅μ μμ±ν©λλ€.
|
143 |
+
'history'λ Gradio 'messages' νμμ κ°μ ν©λλ€: List[Dict].
|
144 |
+
"""
|
145 |
+
if model is None or tokenizer is None:
|
146 |
+
return "μ€λ₯: λͺ¨λΈμ΄ λ‘λλμ§ μμμ΅λλ€."
|
147 |
+
|
148 |
+
# λν κΈ°λ‘ μ²λ¦¬
|
149 |
history_text = ""
|
150 |
+
if isinstance(history, list):
|
151 |
+
for turn in history:
|
152 |
+
if isinstance(turn, tuple) and len(turn) == 2:
|
153 |
+
history_text += f"Human: {turn[0]}\nAssistant: {turn[1]}\n"
|
154 |
+
|
155 |
+
# MiMo λͺ¨λΈ μ
λ ₯ νμμ λ§κ² ν둬ννΈ κ΅¬μ±
|
156 |
prompt = f"{history_text}Human: {message}\nAssistant:"
|
157 |
+
|
158 |
+
inputs = None
|
159 |
+
output_ids = None
|
160 |
+
|
161 |
+
try:
|
162 |
+
# μ
λ ₯ μ€λΉ
|
163 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
164 |
+
input_length = inputs.input_ids.shape[1]
|
165 |
+
print(f"\nμ
λ ₯ ν ν° μ: {input_length}")
|
166 |
+
|
167 |
+
except Exception as e:
|
168 |
+
print(f"!!! μ
λ ₯ μ²λ¦¬ μ€ μ€λ₯ λ°μ: {e}")
|
169 |
+
return f"μ€λ₯: μ
λ ₯ νμμ μ²λ¦¬νλ μ€ λ¬Έμ κ° λ°μνμ΅λλ€. ({e})"
|
170 |
+
|
171 |
+
try:
|
172 |
+
print("μλ΅ μμ± μ€...")
|
173 |
+
generation_start_time = time.time()
|
174 |
+
|
175 |
+
# μμ± μΈμ μ€λΉ, λΉμ΄ μλ stop_token_ids_list μ²λ¦¬
|
176 |
+
gen_kwargs = {
|
177 |
+
"max_new_tokens": MAX_NEW_TOKENS,
|
178 |
+
"pad_token_id": tokenizer.eos_token_id if tokenizer.eos_token_id is not None else tokenizer.pad_token_id,
|
179 |
+
"do_sample": True,
|
180 |
+
"temperature": 0.7,
|
181 |
+
"top_p": 0.9,
|
182 |
+
"repetition_penalty": 1.1
|
183 |
+
}
|
184 |
+
|
185 |
+
if stop_token_ids_list:
|
186 |
+
gen_kwargs["eos_token_id"] = stop_token_ids_list
|
187 |
+
else:
|
188 |
+
print("μμ± κ²½κ³ : μ μλ μ€μ§ ν ν°μ΄ μμ΅λλ€.")
|
189 |
+
|
190 |
+
with torch.no_grad():
|
191 |
+
output_ids = model.generate(**inputs, **gen_kwargs)
|
192 |
+
|
193 |
+
generation_time = time.time() - generation_start_time
|
194 |
+
print(f"μμ± μλ£: {generation_time:.2f}μ΄ μμ.")
|
195 |
+
|
196 |
+
except Exception as e:
|
197 |
+
print(f"!!! λͺ¨λΈ μμ± μ€ μ€λ₯ λ°μ: {e}")
|
198 |
+
if inputs is not None: del inputs
|
199 |
+
if output_ids is not None: del output_ids
|
200 |
+
gc.collect()
|
201 |
+
return f"μ€λ₯: μλ΅μ μμ±νλ μ€ λ¬Έμ κ° λ°μνμ΅λλ€. ({e})"
|
202 |
+
|
203 |
+
# μλ΅ λμ½λ©
|
204 |
+
response = "μ€λ₯: μλ΅ μμ±μ μ€ν¨νμ΅λλ€."
|
205 |
+
if output_ids is not None:
|
206 |
+
try:
|
207 |
+
new_tokens = output_ids[0, input_length:]
|
208 |
+
response = tokenizer.decode(new_tokens, skip_special_tokens=True)
|
209 |
+
print(f"μΆλ ₯ ν ν° μ: {len(new_tokens)}")
|
210 |
+
del new_tokens
|
211 |
+
except Exception as e:
|
212 |
+
print(f"!!! μλ΅ λμ½λ© μ€ μ€λ₯ λ°μ: {e}")
|
213 |
+
response = "μ€λ₯: μλ΅μ λμ½λ©νλ μ€ λ¬Έμ κ° λ°μνμ΅λλ€."
|
214 |
+
|
215 |
+
# λ©λͺ¨λ¦¬ μ 리
|
216 |
+
if inputs is not None: del inputs
|
217 |
+
if output_ids is not None: del output_ids
|
218 |
+
gc.collect()
|
219 |
+
print("λ©λͺ¨λ¦¬ μ 리 μλ£.")
|
220 |
+
|
221 |
return response.strip()
|
222 |
|
223 |
+
# --- Gradio μΈν°νμ΄μ€ μ€μ ---
|
224 |
+
print("--- Gradio μΈν°νμ΄μ€ μ€μ μ€ ---")
|
225 |
+
|
226 |
+
examples = [
|
227 |
+
["μλ
νμΈμ! μκΈ°μκ° μ’ ν΄μ£ΌμΈμ."],
|
228 |
+
["μΈκ³΅μ§λ₯κ³Ό λ¨Έμ λ¬λμ μ°¨μ΄μ μ 무μμΈκ°μ?"],
|
229 |
+
["λ₯λ¬λ λͺ¨λΈ νμ΅ κ³Όμ μ λ¨κ³λ³λ‘ μλ €μ£ΌμΈμ."],
|
230 |
+
["μ μ£Όλ μ¬ν κ³νμ μΈμ°κ³ μλλ°, 3λ° 4μΌ μΆμ² μ½μ€ μ’ μλ €μ£ΌμΈμ."],
|
231 |
+
]
|
232 |
+
|
233 |
+
# ChatInterfaceλ₯Ό μ¬μ©νμ¬ μ체 Chatbot μ»΄ν¬λνΈ κ΄λ¦¬
|
234 |
demo = gr.ChatInterface(
|
235 |
+
fn=predict,
|
236 |
+
title="π€ XiaomiMiMo/MiMo-7B-RL νκ΅μ΄ λ°λͺ¨",
|
237 |
+
description=(
|
238 |
+
f"**λͺ¨λΈ:** {MODEL_ID}\n"
|
239 |
+
f"**νκ²½:** {'GPU' if torch.cuda.is_available() else 'CPU'}\n"
|
240 |
+
f"**μ£Όμ:** {'GPUμμ μ€ν μ€μ
λλ€.' if torch.cuda.is_available() else 'CPUμμ μ€νλλ―λ‘ μλ΅ μμ±μ λ€μ μκ°μ΄ 걸릴 μ μμ΅λλ€.'}\n"
|
241 |
+
f"μ΅λ μμ± ν ν° μλ {MAX_NEW_TOKENS}κ°λ‘ μ νλ©λλ€."
|
242 |
+
),
|
243 |
+
examples=examples,
|
244 |
+
cache_examples=False,
|
245 |
+
theme=gr.themes.Soft(),
|
246 |
)
|
247 |
|
248 |
+
# --- μ ν리μΌμ΄μ
μ€ν ---
|
249 |
if __name__ == "__main__":
|
250 |
+
if load_successful:
|
251 |
+
warmup_model()
|
252 |
+
else:
|
253 |
+
print("λͺ¨λΈ λ‘λ©μ μ€ν¨νμ¬ μμ
μ 건λλλλ€.")
|
254 |
+
|
255 |
+
print("--- Gradio μ± μ€ν μ€ ---")
|
256 |
+
demo.queue().launch(
|
257 |
+
# share=True # κ³΅κ° λ§ν¬λ₯Ό μνλ©΄ μ£Όμ ν΄μ
|
258 |
+
# server_name="0.0.0.0" # λ‘컬 λ€νΈμν¬ μ κ·Όμ μνλ©΄ μ£Όμ ν΄μ
|
259 |
+
)
|