Spaces:
Running
on
Zero
Running
on
Zero
File size: 1,444 Bytes
f852c4e 9267136 e6a16df 9267136 a97aa70 9267136 b3fa588 9267136 9b5c697 9267136 b3fa588 9267136 f852c4e 9267136 f852c4e 9267136 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
import spaces
# 加载模型和分词器
model_name = "XiaomiMiMo/MiMo-7B-RL"
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float16,
device_map="auto",
trust_remote_code=True
)
@spaces.GPU()
def predict(message, history):
# 构建输入
history_text = ""
for human, assistant in history:
history_text += f"Human: {human}\nAssistant: {assistant}\n"
prompt = f"{history_text}Human: {message}\nAssistant:"
# 生成回复
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(
**inputs,
max_new_tokens=10000,
do_sample=True,
temperature=0.7,
top_p=0.9,
repetition_penalty=1.1,
pad_token_id=tokenizer.eos_token_id
)
response = tokenizer.decode(outputs[0][inputs.input_ids.shape[1]:], skip_special_tokens=True)
return response.strip()
# 创建Gradio界面
demo = gr.ChatInterface(
predict,
title="MiMo-7B-RL 聊天机器人",
description="这是一个基于小米 MiMo-7B-RL 模型的聊天机器人。",
examples=["你好!", "请介绍一下你自己", "你能做什么?"],
theme=gr.themes.Soft()
)
if __name__ == "__main__":
demo.launch(share=True)
|