Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import numpy as np | |
from PIL import Image, ImageDraw | |
from gradio_client import Client, handle_file | |
import random | |
import tempfile | |
import os | |
import logging | |
import torch | |
from diffusers import AutoencoderKL, TCDScheduler | |
from diffusers.models.model_loading_utils import load_state_dict | |
from huggingface_hub import hf_hub_download | |
# Spaces GPU | |
try: | |
import spaces | |
except: | |
# GPU ๋ฐ์ฝ๋ ์ดํฐ๊ฐ ์์ ๋๋ฅผ ์ํ ๋๋ฏธ ๋ฐ์ฝ๋ ์ดํฐ | |
class spaces: | |
def GPU(duration=None): | |
def decorator(func): | |
return func | |
return decorator | |
# ํ๊ฒฝ ๋ณ์ ์ค์ | |
os.environ["TRANSFORMERS_ALLOW_UNSAFE_DESERIALIZATION"] = "1" | |
# MMAudio ๊ด๋ จ ์ํฌํธ | |
try: | |
import mmaudio | |
from mmaudio.eval_utils import (ModelConfig, all_model_cfg, generate, load_video, make_video, | |
setup_eval_logging) | |
from mmaudio.model.flow_matching import FlowMatching | |
from mmaudio.model.networks import MMAudio, get_my_mmaudio | |
from mmaudio.model.sequence_config import SequenceConfig | |
from mmaudio.model.utils.features_utils import FeaturesUtils | |
MMAUDIO_AVAILABLE = True | |
except ImportError: | |
MMAUDIO_AVAILABLE = False | |
logging.warning("MMAudio not available. Sound generation will be disabled.") | |
# ControlNet ๋ชจ๋ธ ๋ก๋ | |
try: | |
from controlnet_union import ControlNetModel_Union | |
from pipeline_fill_sd_xl import StableDiffusionXLFillPipeline | |
# ControlNet ์ค์ ๋ฐ ๋ก๋ | |
config_file = hf_hub_download( | |
"xinsir/controlnet-union-sdxl-1.0", | |
filename="config_promax.json", | |
) | |
config = ControlNetModel_Union.load_config(config_file) | |
controlnet_model = ControlNetModel_Union.from_config(config) | |
model_file = hf_hub_download( | |
"xinsir/controlnet-union-sdxl-1.0", | |
filename="diffusion_pytorch_model_promax.safetensors", | |
) | |
state_dict = load_state_dict(model_file) | |
loaded_keys = list(state_dict.keys()) | |
result = ControlNetModel_Union._load_pretrained_model( | |
controlnet_model, state_dict, model_file, "xinsir/controlnet-union-sdxl-1.0", loaded_keys | |
) | |
model = result[0] | |
model = model.to(device="cuda", dtype=torch.float16) | |
# VAE ๋ก๋ | |
vae = AutoencoderKL.from_pretrained( | |
"madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16 | |
).to("cuda") | |
# ํ์ดํ๋ผ์ธ ๋ก๋ | |
pipe = StableDiffusionXLFillPipeline.from_pretrained( | |
"SG161222/RealVisXL_V5.0_Lightning", | |
torch_dtype=torch.float16, | |
vae=vae, | |
controlnet=model, | |
variant="fp16", | |
).to("cuda") | |
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config) | |
OUTPAINT_MODEL_LOADED = True | |
except Exception as e: | |
logging.error(f"Failed to load outpainting models: {str(e)}") | |
OUTPAINT_MODEL_LOADED = False | |
# MMAudio ๋ชจ๋ธ ์ค์ ๋ฐ ๋ก๋ | |
if MMAUDIO_AVAILABLE: | |
try: | |
# CUDA ์ค์ | |
if torch.cuda.is_available(): | |
device = torch.device("cuda") | |
torch.backends.cuda.matmul.allow_tf32 = True | |
torch.backends.cudnn.allow_tf32 = True | |
torch.backends.cudnn.benchmark = True | |
else: | |
device = torch.device("cpu") | |
dtype = torch.bfloat16 | |
# ๋ชจ๋ธ ์ค์ | |
model_cfg: ModelConfig = all_model_cfg['large_44k_v2'] | |
model_cfg.download_if_needed() | |
setup_eval_logging() | |
# ๋ชจ๋ธ ๋ก๋ | |
def get_mmaudio_model(): | |
with torch.cuda.device(device): | |
seq_cfg = model_cfg.seq_cfg | |
net: MMAudio = get_my_mmaudio(model_cfg.model_name).to(device, dtype).eval() | |
net.load_weights(torch.load(model_cfg.model_path, map_location=device, weights_only=True)) | |
logging.info(f'Loaded MMAudio weights from {model_cfg.model_path}') | |
feature_utils = FeaturesUtils( | |
tod_vae_ckpt=model_cfg.vae_path, | |
synchformer_ckpt=model_cfg.synchformer_ckpt, | |
enable_conditions=True, | |
mode=model_cfg.mode, | |
bigvgan_vocoder_ckpt=model_cfg.bigvgan_16k_path, | |
need_vae_encoder=False | |
).to(device, dtype).eval() | |
return net, feature_utils, seq_cfg | |
mmaudio_net, mmaudio_feature_utils, mmaudio_seq_cfg = get_mmaudio_model() | |
MMAUDIO_LOADED = True | |
except Exception as e: | |
logging.error(f"Failed to load MMAudio models: {str(e)}") | |
MMAUDIO_LOADED = False | |
else: | |
MMAUDIO_LOADED = False | |
# API URLs | |
TEXT2IMG_API_URL = "http://211.233.58.201:7896" | |
VIDEO_API_URL = "http://211.233.58.201:7875" | |
# ๋ก๊น ์ค์ | |
logging.basicConfig(level=logging.INFO) | |
# Image size presets | |
IMAGE_PRESETS = { | |
"์ปค์คํ ": {"width": 1024, "height": 1024}, | |
"1:1 ์ ์ฌ๊ฐํ": {"width": 1024, "height": 1024}, | |
"4:3 ํ์ค": {"width": 1024, "height": 768}, | |
"16:9 ์์ด๋์คํฌ๋ฆฐ": {"width": 1024, "height": 576}, | |
"9:16 ์ธ๋กํ": {"width": 576, "height": 1024}, | |
"6:19 ํน์ ์ธ๋กํ": {"width": 324, "height": 1024}, | |
"Instagram ์ ์ฌ๊ฐํ": {"width": 1080, "height": 1080}, | |
"Instagram ์คํ ๋ฆฌ": {"width": 1080, "height": 1920}, | |
"Instagram ๊ฐ๋กํ": {"width": 1080, "height": 566}, | |
"Facebook ์ปค๋ฒ": {"width": 820, "height": 312}, | |
"Twitter ํค๋": {"width": 1500, "height": 500}, | |
"YouTube ์ธ๋ค์ผ": {"width": 1280, "height": 720}, | |
"LinkedIn ๋ฐฐ๋": {"width": 1584, "height": 396}, | |
} | |
def update_dimensions(preset): | |
if preset in IMAGE_PRESETS: | |
return IMAGE_PRESETS[preset]["width"], IMAGE_PRESETS[preset]["height"] | |
return 1024, 1024 | |
def generate_text_to_image(prompt, width, height, guidance, inference_steps, seed): | |
if not prompt: | |
return None, "ํ๋กฌํํธ๋ฅผ ์ ๋ ฅํด์ฃผ์ธ์" | |
try: | |
client = Client(TEXT2IMG_API_URL) | |
if seed == -1: | |
seed = random.randint(0, 9999999) | |
result = client.predict( | |
prompt=prompt, | |
width=int(width), | |
height=int(height), | |
guidance=float(guidance), | |
inference_steps=int(inference_steps), | |
seed=int(seed), | |
do_img2img=False, | |
init_image=None, | |
image2image_strength=0.8, | |
resize_img=True, | |
api_name="/generate_image" | |
) | |
return result[0], f"์ฌ์ฉ๋ ์๋: {result[1]}" | |
except Exception as e: | |
logging.error(f"Image generation error: {str(e)}") | |
return None, f"์ค๋ฅ: {str(e)}" | |
def video_to_audio(video_path, prompt, negative_prompt="music", seed=0, num_steps=25, cfg_strength=4.5, target_duration=8.0): | |
"""๋น๋์ค์ ์ฌ์ด๋๋ฅผ ์ถ๊ฐํ๋ ํจ์""" | |
if not MMAUDIO_LOADED: | |
logging.error("MMAudio model not loaded") | |
return video_path | |
try: | |
rng = torch.Generator(device=device) | |
rng.manual_seed(seed) | |
fm = FlowMatching(min_sigma=0, inference_mode='euler', num_steps=num_steps) | |
# ๋น๋์ค ๋ก๋ - target_duration ์ฌ์ฉ | |
clip_frames, sync_frames, actual_duration = load_video(video_path, target_duration) | |
clip_frames = clip_frames.unsqueeze(0) | |
sync_frames = sync_frames.unsqueeze(0) | |
mmaudio_seq_cfg.duration = actual_duration | |
mmaudio_net.update_seq_lengths(mmaudio_seq_cfg.latent_seq_len, mmaudio_seq_cfg.clip_seq_len, mmaudio_seq_cfg.sync_seq_len) | |
# ์ค๋์ค ์์ฑ | |
audios = generate(clip_frames, | |
sync_frames, [prompt], | |
negative_text=[negative_prompt], | |
feature_utils=mmaudio_feature_utils, | |
net=mmaudio_net, | |
fm=fm, | |
rng=rng, | |
cfg_strength=cfg_strength) | |
audio = audios.float().cpu()[0] | |
# ๋น๋์ค์ ์ค๋์ค ๊ฒฐํฉ | |
video_save_path = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4').name | |
make_video(video_path, | |
video_save_path, | |
audio, | |
sampling_rate=mmaudio_seq_cfg.sampling_rate, | |
duration_sec=mmaudio_seq_cfg.duration) | |
return video_save_path | |
except Exception as e: | |
logging.error(f"Video to audio error: {str(e)}") | |
import traceback | |
traceback.print_exc() | |
return video_path | |
def generate_video_from_image(image, prompt="", length=4.0): | |
if image is None: | |
return None | |
try: | |
# ์ด๋ฏธ์ง ์ ์ฅ | |
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as fp: | |
temp_path = fp.name | |
Image.fromarray(image).save(temp_path) | |
# API ํธ์ถ | |
client = Client(VIDEO_API_URL) | |
result = client.predict( | |
input_image=handle_file(temp_path), | |
prompt=prompt if prompt else "Generate natural motion", | |
n_prompt="", | |
seed=random.randint(0, 9999999), | |
use_teacache=True, | |
video_length=float(length), | |
api_name="/process" | |
) | |
os.unlink(temp_path) | |
if result and len(result) > 0: | |
video_dict = result[0] | |
return video_dict.get("video") if isinstance(video_dict, dict) else None | |
except Exception as e: | |
logging.error(f"Video generation error: {str(e)}") | |
return None | |
def add_sound_to_video(video_path, sound_prompt, sound_negative_prompt="music"): | |
if not video_path or not MMAUDIO_LOADED: | |
return video_path | |
try: | |
return video_to_audio( | |
video_path=video_path, | |
prompt=sound_prompt, | |
negative_prompt=sound_negative_prompt, | |
seed=random.randint(0, 9999999), | |
num_steps=25, | |
cfg_strength=4.5, | |
target_duration=8.0 # ๊ธฐ๋ณธ๊ฐ ์ฌ์ฉ | |
) | |
except Exception as e: | |
logging.error(f"Sound addition error: {str(e)}") | |
return video_path | |
def prepare_image_and_mask(image, width, height, overlap_percentage, alignment): | |
"""์ด๋ฏธ์ง์ ๋ง์คํฌ๋ฅผ ์ค๋นํ๋ ํจ์""" | |
if image is None: | |
return None, None | |
# PIL ์ด๋ฏธ์ง๋ก ๋ณํ | |
if isinstance(image, np.ndarray): | |
image = Image.fromarray(image).convert('RGB') | |
target_size = (width, height) | |
# ์ด๋ฏธ์ง๋ฅผ ํ๊ฒ ํฌ๊ธฐ์ ๋ง๊ฒ ์กฐ์ | |
scale_factor = min(target_size[0] / image.width, target_size[1] / image.height) | |
new_width = int(image.width * scale_factor) | |
new_height = int(image.height * scale_factor) | |
# ์ด๋ฏธ์ง ๋ฆฌ์ฌ์ด์ฆ | |
source = image.resize((new_width, new_height), Image.LANCZOS) | |
# ์ค๋ฒ๋ฉ ๊ณ์ฐ | |
overlap_x = int(new_width * (overlap_percentage / 100)) | |
overlap_y = int(new_height * (overlap_percentage / 100)) | |
overlap_x = max(overlap_x, 1) | |
overlap_y = max(overlap_y, 1) | |
# ์ ๋ ฌ์ ๋ฐ๋ฅธ ๋ง์ง ๊ณ์ฐ | |
if alignment == "๊ฐ์ด๋ฐ": | |
margin_x = (target_size[0] - new_width) // 2 | |
margin_y = (target_size[1] - new_height) // 2 | |
elif alignment == "์ผ์ชฝ": | |
margin_x = 0 | |
margin_y = (target_size[1] - new_height) // 2 | |
elif alignment == "์ค๋ฅธ์ชฝ": | |
margin_x = target_size[0] - new_width | |
margin_y = (target_size[1] - new_height) // 2 | |
elif alignment == "์": | |
margin_x = (target_size[0] - new_width) // 2 | |
margin_y = 0 | |
elif alignment == "์๋": | |
margin_x = (target_size[0] - new_width) // 2 | |
margin_y = target_size[1] - new_height | |
# ๋ฐฐ๊ฒฝ ์ด๋ฏธ์ง ์์ฑ | |
background = Image.new('RGB', target_size, (255, 255, 255)) | |
background.paste(source, (margin_x, margin_y)) | |
# ๋ง์คํฌ ์์ฑ | |
mask = Image.new('L', target_size, 255) | |
mask_draw = ImageDraw.Draw(mask) | |
# ๋ง์คํฌ ์์ญ ๊ทธ๋ฆฌ๊ธฐ | |
white_gaps_patch = 2 | |
left_overlap = margin_x + overlap_x if alignment != "์ผ์ชฝ" else margin_x | |
right_overlap = margin_x + new_width - overlap_x if alignment != "์ค๋ฅธ์ชฝ" else margin_x + new_width | |
top_overlap = margin_y + overlap_y if alignment != "์" else margin_y | |
bottom_overlap = margin_y + new_height - overlap_y if alignment != "์๋" else margin_y + new_height | |
mask_draw.rectangle([ | |
(left_overlap, top_overlap), | |
(right_overlap, bottom_overlap) | |
], fill=0) | |
return background, mask | |
def outpaint_image(image, prompt, width, height, overlap_percentage, alignment, num_steps=8): | |
"""์ด๋ฏธ์ง ์์ํ์ธํ ์คํ""" | |
if image is None: | |
return None | |
if not OUTPAINT_MODEL_LOADED: | |
return Image.new('RGB', (width, height), (200, 200, 200)) | |
try: | |
# ์ด๋ฏธ์ง์ ๋ง์คํฌ ์ค๋น | |
background, mask = prepare_image_and_mask(image, width, height, overlap_percentage, alignment) | |
if background is None: | |
return None | |
# cnet_image ์์ฑ (๋ง์คํฌ ์์ญ์ ๊ฒ์์์ผ๋ก) | |
cnet_image = background.copy() | |
cnet_image.paste(0, (0, 0), mask) | |
# ํ๋กฌํํธ ์ค๋น | |
final_prompt = f"{prompt}, high quality, 4k" if prompt else "high quality, 4k" | |
# GPU์์ ์คํ | |
with torch.autocast(device_type="cuda", dtype=torch.float16): | |
( | |
prompt_embeds, | |
negative_prompt_embeds, | |
pooled_prompt_embeds, | |
negative_pooled_prompt_embeds, | |
) = pipe.encode_prompt(final_prompt, "cuda", True) | |
# ์์ฑ ํ๋ก์ธ์ค | |
for generated_image in pipe( | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
pooled_prompt_embeds=pooled_prompt_embeds, | |
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, | |
image=cnet_image, | |
num_inference_steps=num_steps | |
): | |
# ์ค๊ฐ ๊ฒฐ๊ณผ (ํ์์ ์ฌ์ฉ) | |
pass | |
# ์ต์ข ์ด๋ฏธ์ง | |
final_image = generated_image | |
# RGBA๋ก ๋ณํํ๊ณ ๋ง์คํฌ ์ ์ฉ | |
final_image = final_image.convert("RGBA") | |
cnet_image.paste(final_image, (0, 0), mask) | |
return cnet_image | |
except Exception as e: | |
logging.error(f"Outpainting error: {str(e)}") | |
return background if 'background' in locals() else None | |
# CSS | |
css = """ | |
:root { | |
--primary-color: #f8c3cd; | |
--secondary-color: #b3e5fc; | |
--background-color: #f5f5f7; | |
--card-background: #ffffff; | |
--text-color: #424242; | |
--accent-color: #ffb6c1; | |
--success-color: #c8e6c9; | |
--warning-color: #fff9c4; | |
--shadow-color: rgba(0, 0, 0, 0.1); | |
--border-radius: 12px; | |
} | |
.gradio-container { | |
max-width: 1200px !important; | |
margin: 0 auto !important; | |
} | |
.panel-box { | |
border-radius: var(--border-radius) !important; | |
box-shadow: 0 8px 16px var(--shadow-color) !important; | |
background-color: var(--card-background) !important; | |
padding: 20px !important; | |
margin-bottom: 20px !important; | |
} | |
#generate-btn, #video-btn, #outpaint-btn { | |
background: linear-gradient(135deg, #ff9a9e, #fad0c4) !important; | |
font-size: 1.1rem !important; | |
padding: 12px 24px !important; | |
margin-top: 10px !important; | |
width: 100% !important; | |
} | |
.tabitem { | |
min-height: 700px !important; | |
} | |
""" | |
# Gradio Interface | |
demo = gr.Blocks(css=css, title="AI ์ด๋ฏธ์ง & ๋น๋์ค ์์ฑ๊ธฐ") | |
with demo: | |
gr.Markdown("# ๐จ Ginigen ์คํ๋์ค") | |
with gr.Tabs() as tabs: | |
# ์ฒซ ๋ฒ์งธ ํญ: ํ ์คํธ to ์ด๋ฏธ์ง | |
with gr.Tab("ํ ์คํธโ์ด๋ฏธ์งโ๋น๋์ค", elem_classes="tabitem"): | |
with gr.Row(equal_height=True): | |
# ์ ๋ ฅ ์ปฌ๋ผ | |
with gr.Column(scale=1): | |
with gr.Group(elem_classes="panel-box"): | |
gr.Markdown("### ๐ ์ด๋ฏธ์ง ์์ฑ ์ค์ ") | |
prompt = gr.Textbox( | |
label="ํ๋กฌํํธ(ํ๊ธ/์์ด ๊ฐ๋ฅ)", | |
placeholder="์์ฑํ๊ณ ์ถ์ ์ด๋ฏธ์ง๋ฅผ ์ค๋ช ํ์ธ์...", | |
lines=3 | |
) | |
size_preset = gr.Dropdown( | |
choices=list(IMAGE_PRESETS.keys()), | |
value="1:1 ์ ์ฌ๊ฐํ", | |
label="ํฌ๊ธฐ ํ๋ฆฌ์ " | |
) | |
with gr.Row(): | |
width = gr.Slider(256, 2048, 1024, step=64, label="๋๋น") | |
height = gr.Slider(256, 2048, 1024, step=64, label="๋์ด") | |
with gr.Row(): | |
guidance = gr.Slider(1.0, 20.0, 3.5, step=0.1, label="๊ฐ์ด๋์ค") | |
steps = gr.Slider(1, 50, 30, step=1, label="์คํ ") | |
seed = gr.Number(label="์๋ (-1=๋๋ค)", value=-1) | |
generate_btn = gr.Button("๐จ ์ด๋ฏธ์ง ์์ฑ", variant="primary", elem_id="generate-btn") | |
with gr.Group(elem_classes="panel-box"): | |
gr.Markdown("### ๐ฌ ๋น๋์ค ์์ฑ ์ค์ ") | |
video_prompt = gr.Textbox( | |
label="(์ ํ) ๋น๋์ค ํ๋กฌํํธ(์์ด๋ก ์ ๋ ฅ)", | |
placeholder="๋น๋์ค์ ์์ง์์ ์ค๋ช ํ์ธ์... (๋น์๋๋ฉด ๊ธฐ๋ณธ ์์ง์ ์ ์ฉ)", | |
lines=2 | |
) | |
video_length = gr.Slider( | |
minimum=1, | |
maximum=60, | |
value=4, | |
step=0.5, | |
label="๋น๋์ค ๊ธธ์ด (์ด)", | |
info="1์ด์์ 60์ด๊น์ง ์ ํ ๊ฐ๋ฅํฉ๋๋ค" | |
) | |
# ์ฌ์ด๋ ์์ฑ ์ต์ ์ถ๊ฐ | |
sound_generation = gr.Radio( | |
choices=["์ฌ์ด๋ ์์", "์ฌ์ด๋ ์์ฑ"], | |
value="์ฌ์ด๋ ์์", | |
label="์ฌ์ด๋ ์ต์ ", | |
info="๋น๋์ค์ ์ฌ์ด๋๋ฅผ ์ถ๊ฐํ ์ง ์ ํํ์ธ์" | |
) | |
# ์ฌ์ด๋ ๊ด๋ จ ์ ๋ ฅ ํ๋ (์กฐ๊ฑด๋ถ ํ์) | |
with gr.Column(visible=False) as sound_options: | |
sound_prompt = gr.Textbox( | |
label="์ฌ์ด๋ ํ๋กฌํํธ (์ ํ)", | |
placeholder="์์ฑํ ์ฌ์ด๋๋ฅผ ์ค๋ช ํ์ธ์... (๋น์๋๋ฉด ๋น๋์ค ํ๋กฌํํธ ์ฌ์ฉ)", | |
lines=2 | |
) | |
sound_negative_prompt = gr.Textbox( | |
label="์ฌ์ด๋ ๋ค๊ฑฐํฐ๋ธ ํ๋กฌํํธ", | |
value="music", | |
lines=1 | |
) | |
video_btn = gr.Button("๐ฌ ๋น๋์ค๋ก ๋ณํ", variant="secondary", elem_id="video-btn") | |
# ์ถ๋ ฅ ์ปฌ๋ผ | |
with gr.Column(scale=1): | |
with gr.Group(elem_classes="panel-box"): | |
gr.Markdown("### ๐ผ๏ธ ์์ฑ ๊ฒฐ๊ณผ") | |
output_image = gr.Image(label="์์ฑ๋ ์ด๋ฏธ์ง", type="numpy") | |
output_seed = gr.Textbox(label="์๋ ์ ๋ณด") | |
output_video = gr.Video(label="์์ฑ๋ ๋น๋์ค") | |
# ๋ ๋ฒ์งธ ํญ: ์ด๋ฏธ์ง ์์ํ์ธํ | |
with gr.Tab("์ด๋ฏธ์ง ๋น์จ ๋ณ๊ฒฝ/์์ฑ", elem_classes="tabitem"): | |
with gr.Row(equal_height=True): | |
# ์ ๋ ฅ ์ปฌ๋ผ | |
with gr.Column(scale=1): | |
with gr.Group(elem_classes="panel-box"): | |
gr.Markdown("### ๐ผ๏ธ ์ด๋ฏธ์ง ์ ๋ก๋") | |
input_image = gr.Image( | |
label="์๋ณธ ์ด๋ฏธ์ง", | |
type="numpy" | |
) | |
outpaint_prompt = gr.Textbox( | |
label="ํ๋กฌํํธ (์ ํ)", | |
placeholder="ํ์ฅํ ์์ญ์ ๋ํ ์ค๋ช ...", | |
lines=2 | |
) | |
with gr.Group(elem_classes="panel-box"): | |
gr.Markdown("### โ๏ธ ์์ํ์ธํ ์ค์ ") | |
outpaint_size_preset = gr.Dropdown( | |
choices=list(IMAGE_PRESETS.keys()), | |
value="16:9 ์์ด๋์คํฌ๋ฆฐ", | |
label="๋ชฉํ ํฌ๊ธฐ ํ๋ฆฌ์ " | |
) | |
with gr.Row(): | |
outpaint_width = gr.Slider(256, 2048, 1280, step=64, label="๋ชฉํ ๋๋น") | |
outpaint_height = gr.Slider(256, 2048, 720, step=64, label="๋ชฉํ ๋์ด") | |
alignment = gr.Dropdown( | |
choices=["๊ฐ์ด๋ฐ", "์ผ์ชฝ", "์ค๋ฅธ์ชฝ", "์", "์๋"], | |
value="๊ฐ์ด๋ฐ", | |
label="์ ๋ ฌ" | |
) | |
overlap_percentage = gr.Slider( | |
minimum=1, | |
maximum=50, | |
value=10, | |
step=1, | |
label="๋ง์คํฌ ์ค๋ฒ๋ฉ (%)" | |
) | |
outpaint_steps = gr.Slider( | |
minimum=4, | |
maximum=12, | |
value=8, | |
step=1, | |
label="์ถ๋ก ์คํ " | |
) | |
outpaint_btn = gr.Button("๐จ ์์ํ์ธํ ์คํ", variant="primary", elem_id="outpaint-btn") | |
# ์ถ๋ ฅ ์ปฌ๋ผ | |
with gr.Column(scale=1): | |
with gr.Group(elem_classes="panel-box"): | |
gr.Markdown("### ๐ผ๏ธ ๊ฒฐ๊ณผ") | |
outpaint_result = gr.Image(label="์์ํ์ธํ ๊ฒฐ๊ณผ") | |
# ์ด๋ฒคํธ ์ฐ๊ฒฐ - ์ฒซ ๋ฒ์งธ ํญ | |
size_preset.change(update_dimensions, [size_preset], [width, height]) | |
generate_btn.click( | |
generate_text_to_image, | |
[prompt, width, height, guidance, steps, seed], | |
[output_image, output_seed] | |
) | |
# ์ฌ์ด๋ ์ต์ ํ์/์จ๊น | |
def toggle_sound_options(choice): | |
return gr.update(visible=(choice == "์ฌ์ด๋ ์์ฑ")) | |
sound_generation.change( | |
toggle_sound_options, | |
[sound_generation], | |
[sound_options] | |
) | |
video_btn.click( | |
generate_video_from_image, | |
[output_image, video_prompt, video_length], # ์๋๋๋ก 3๊ฐ ๋งค๊ฐ๋ณ์๋ง | |
[output_video] | |
) | |
# ์ฌ์ด๋ ์ถ๊ฐ๋ ๋ณ๋ ๋ฒํผ์ผ๋ก | |
sound_btn = gr.Button("๐ ๋น๋์ค์ ์ฌ์ด๋ ์ถ๊ฐ", visible=False) | |
sound_btn.click( | |
add_sound_to_video, | |
[output_video, sound_prompt, sound_negative_prompt], | |
[output_video] | |
) | |
# ์ด๋ฒคํธ ์ฐ๊ฒฐ - ๋ ๋ฒ์งธ ํญ | |
outpaint_size_preset.change(update_dimensions, [outpaint_size_preset], [outpaint_width, outpaint_height]) | |
outpaint_btn.click( | |
outpaint_image, | |
[input_image, outpaint_prompt, outpaint_width, outpaint_height, overlap_percentage, alignment, outpaint_steps], | |
[outpaint_result] | |
) | |
demo.launch() |