3D-LLAMA / app.py
ginipick's picture
Update app.py
2e2ddc1 verified
import os
import shlex
import spaces
import subprocess
def install_cuda_toolkit():
CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/12.4.0/local_installers/cuda_12.4.0_550.54.14_linux.run"
CUDA_TOOLKIT_FILE = "/tmp/%s" % os.path.basename(CUDA_TOOLKIT_URL)
subprocess.call(["wget", "-q", CUDA_TOOLKIT_URL, "-O", CUDA_TOOLKIT_FILE])
subprocess.call(["chmod", "+x", CUDA_TOOLKIT_FILE])
subprocess.call([CUDA_TOOLKIT_FILE, "--silent", "--toolkit"])
os.environ["CUDA_HOME"] = "/usr/local/cuda"
os.environ["PATH"] = "%s/bin:%s" % (os.environ["CUDA_HOME"], os.environ["PATH"])
os.environ["LD_LIBRARY_PATH"] = "%s/lib:%s" % (
os.environ["CUDA_HOME"],
"" if "LD_LIBRARY_PATH" not in os.environ else os.environ["LD_LIBRARY_PATH"],
)
os.environ["TORCH_CUDA_ARCH_LIST"] = "8.0;8.6"
install_cuda_toolkit()
os.system("pip list | grep torch")
os.system('nvcc -V')
print("cd /home/user/app/step1x3d_texture/differentiable_renderer/ && python setup.py install")
os.system("cd /home/user/app/step1x3d_texture/differentiable_renderer/ && python setup.py install")
subprocess.run(shlex.split("pip install custom_rasterizer-0.1-cp310-cp310-linux_x86_64.whl"), check=True)
import time
import uuid
import torch
import trimesh
import argparse
import numpy as np
import gradio as gr
from gradio_client import Client
from PIL import Image
from step1x3d_geometry.models.pipelines.pipeline import Step1X3DGeometryPipeline
from step1x3d_texture.pipelines.step1x_3d_texture_synthesis_pipeline import (
Step1X3DTexturePipeline,
)
from step1x3d_geometry.models.pipelines.pipeline_utils import reduce_face, remove_degenerate_face
parser = argparse.ArgumentParser()
parser.add_argument(
"--geometry_model", type=str, default="Step1X-3D-Geometry-Label-1300m"
)
parser.add_argument(
"--texture_model", type=str, default="Step1X-3D-Texture"
)
parser.add_argument("--cache_dir", type=str, default="cache")
args = parser.parse_args()
os.makedirs(args.cache_dir, exist_ok=True)
geometry_model = Step1X3DGeometryPipeline.from_pretrained(
"stepfun-ai/Step1X-3D", subfolder=args.geometry_model
).to("cuda")
texture_model = Step1X3DTexturePipeline.from_pretrained("stepfun-ai/Step1X-3D", subfolder=args.texture_model)
# Initialize text-to-image client
t2i_client = Client(os.getenv("H100_3D_URL"))
def generate_image_from_text(prompt, height, width, steps, scales, seed):
"""Generate image from text using the external API"""
try:
result = t2i_client.predict(
height=height,
width=width,
steps=steps,
scales=scales,
prompt=prompt,
seed=seed if seed != -1 else None,
api_name="/process_and_save_image"
)
# Result contains a dict with 'path' key pointing to the generated image
if isinstance(result, dict) and 'path' in result:
return result['path']
elif isinstance(result, str):
return result
else:
raise Exception("Unexpected result format from text-to-image API")
except Exception as e:
print(f"Error generating image from text: {e}")
return None
def get_random_seed():
"""Get a random seed from the external API"""
try:
result = t2i_client.predict(api_name="/update_random_seed")
return result
except Exception as e:
print(f"Error getting random seed: {e}")
return -1
@spaces.GPU(duration=240)
def generate_3d_func(
input_image_path, guidance_scale, inference_steps, max_facenum, symmetry, edge_type
):
# geometry_model = geometry_model.to("cuda")
if "Label" in args.geometry_model:
symmetry_values = ["x", "asymmetry"]
out = geometry_model(
input_image_path,
label={"symmetry": symmetry_values[int(symmetry)], "edge_type": edge_type},
guidance_scale=float(guidance_scale),
octree_resolution=384,
max_facenum=int(max_facenum),
num_inference_steps=int(inference_steps),
)
else:
out = geometry_model(
input_image_path,
guidance_scale=float(guidance_scale),
num_inference_steps=int(inference_steps),
max_facenum=int(max_facenum),
)
save_name = str(uuid.uuid4())
print(save_name)
geometry_save_path = f"{args.cache_dir}/{save_name}.glb"
geometry_mesh = out.mesh[0]
geometry_mesh.export(geometry_save_path)
geometry_mesh = remove_degenerate_face(geometry_mesh)
geometry_mesh = reduce_face(geometry_mesh)
textured_mesh = texture_model(input_image_path, geometry_mesh)
textured_save_path = f"{args.cache_dir}/{save_name}-textured.glb"
textured_mesh.export(textured_save_path)
torch.cuda.empty_cache()
print("Generate finish")
return geometry_save_path, textured_save_path
def update_image_display(uploaded_image, generated_image):
"""Update the displayed image based on which source has content"""
if generated_image is not None:
return generated_image
elif uploaded_image is not None:
return uploaded_image
else:
return None
with gr.Blocks(title="3D-LLAMA V2") as demo:
gr.Markdown("# 3D-LLAMA V2 with Step1X-3D")
with gr.Row():
with gr.Column(scale=2):
gr.Markdown("## Image Input")
with gr.Tab("Upload Image"):
uploaded_image = gr.Image(label="Upload Image", type="filepath")
with gr.Tab("Generate from Text"):
text_prompt = gr.Textbox(label="Image Description", placeholder="Enter your image description here...")
with gr.Row():
t2i_height = gr.Slider(label="Height", minimum=512, maximum=2048, value=1024, step=64)
t2i_width = gr.Slider(label="Width", minimum=512, maximum=2048, value=1024, step=64)
with gr.Row():
t2i_steps = gr.Slider(label="Inference Steps", minimum=1, maximum=50, value=8, step=1)
t2i_scales = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=10.0, value=3.5, step=0.5)
with gr.Row():
t2i_seed = gr.Number(label="Seed (optional, -1 for random)", value=-1)
random_seed_btn = gr.Button("Get Random Seed", scale=0)
generate_image_btn = gr.Button("Generate Image", variant="primary")
# Display the current working image
current_image = gr.Image(label="Current Image (for 3D generation)", type="filepath", interactive=False)
generated_image_path = gr.State(value=None)
gr.Markdown("## 3D Generation Settings")
guidance_scale = gr.Number(label="3D Guidance Scale", value="7.5")
inference_steps = gr.Slider(
label="3D Inference Steps", minimum=1, maximum=100, value=50
)
max_facenum = gr.Number(label="Max Face Num", value="400000")
symmetry = gr.Radio(
choices=["symmetry", "asymmetry"],
label="Symmetry Type",
value="symmetry",
type="index",
)
edge_type = gr.Radio(
choices=["sharp", "normal", "smooth"],
label="Edge Type",
value="sharp",
type="value",
)
btn_3d = gr.Button("Generate 3D", variant="primary")
with gr.Column(scale=4):
textured_preview = gr.Model3D(label="Textured", height=380)
geometry_preview = gr.Model3D(label="Geometry", height=380)
with gr.Column(scale=1):
gr.Examples(
examples=[
["examples/images/000.png"],
["examples/images/001.png"],
["examples/images/004.png"],
["examples/images/008.png"],
["examples/images/028.png"],
["examples/images/032.png"],
["examples/images/061.png"],
["examples/images/107.png"],
],
inputs=[uploaded_image],
cache_examples=False,
label="Example Images"
)
# Event handlers
def on_generate_image(prompt, height, width, steps, scales, seed):
if not prompt:
gr.Warning("Please enter a text prompt")
return None, None
generated_path = generate_image_from_text(prompt, height, width, steps, scales, seed)
if generated_path:
return generated_path, generated_path
else:
gr.Warning("Failed to generate image from text")
return None, None
def on_upload_image(image_path):
return image_path
def get_current_image(uploaded, generated):
if generated is not None:
return generated
elif uploaded is not None:
return uploaded
else:
return None
# Connect event handlers
generate_image_btn.click(
on_generate_image,
inputs=[text_prompt, t2i_height, t2i_width, t2i_steps, t2i_scales, t2i_seed],
outputs=[generated_image_path, current_image]
)
random_seed_btn.click(
get_random_seed,
inputs=[],
outputs=[t2i_seed]
)
uploaded_image.change(
on_upload_image,
inputs=[uploaded_image],
outputs=[current_image]
)
btn_3d.click(
lambda img, gs, is_, mf, sym, et: generate_3d_func(img, gs, is_, mf, sym, et) if img else (None, None),
inputs=[
current_image,
guidance_scale,
inference_steps,
max_facenum,
symmetry,
edge_type,
],
outputs=[geometry_preview, textured_preview],
)
demo.launch(ssr_mode=False)