Spaces:
Running
Running
# π Masked Word Predictor | CPU-only HF Space | |
import gradio as gr | |
import pandas as pd | |
from transformers import pipeline | |
from transformers.pipelines.base import PipelineException | |
# 1. Load the fill-mask pipeline once | |
fill_mask = pipeline("fill-mask", model="distilroberta-base", device=-1) | |
def predict_mask(sentence: str, top_k: int): | |
# 2. Get the actual mask token (e.g. "<mask>") | |
mask = fill_mask.tokenizer.mask_token | |
# 3. Allow users to type [MASK] | |
sentence = sentence.replace("[MASK]", mask) | |
# 4. Validate presence of mask | |
if mask not in sentence: | |
return pd.DataFrame( | |
[["Error: please include `[MASK]` in your sentence.", 0.0]], | |
columns=["Sequence", "Score"] | |
) | |
# 5. Run the pipeline safely | |
try: | |
preds = fill_mask(sentence, top_k=top_k) | |
except PipelineException as e: | |
return pd.DataFrame([[f"Error: {str(e)}", 0.0]], | |
columns=["Sequence", "Score"]) | |
# 6. Build a DataFrame from list-of-lists | |
rows = [[p["sequence"], round(p["score"], 3)] for p in preds] | |
return pd.DataFrame(rows, columns=["Sequence", "Score"]) | |
with gr.Blocks(title="π Masked Word Predictor") as demo: | |
gr.Markdown( | |
"# π Masked Word Predictor\n" | |
"Enter a sentence with one `[MASK]` token and see the top-K completions." | |
) | |
with gr.Row(): | |
sentence = gr.Textbox( | |
lines=2, | |
placeholder="e.g. The salonβs new color treatment is [MASK].", | |
label="Input Sentence" | |
) | |
top_k = gr.Slider( | |
minimum=1, maximum=10, step=1, value=5, | |
label="Top K Predictions" | |
) | |
predict_btn = gr.Button("Predict π", variant="primary") | |
results_df = gr.Dataframe( | |
headers=["Sequence", "Score"], | |
datatype=["str", "number"], | |
wrap=True, | |
interactive=False, | |
label="Predictions" | |
) | |
predict_btn.click( | |
fn=predict_mask, | |
inputs=[sentence, top_k], | |
outputs=results_df | |
) | |
if __name__ == "__main__": | |
demo.launch(server_name="0.0.0.0") | |