ghostai1's picture
Update app.py
493b784 verified
# πŸ” Masked Word Predictor | CPU-only HF Space
import gradio as gr
import pandas as pd
from transformers import pipeline
from transformers.pipelines.base import PipelineException
# 1. Load the fill-mask pipeline once
fill_mask = pipeline("fill-mask", model="distilroberta-base", device=-1)
def predict_mask(sentence: str, top_k: int):
# 2. Get the actual mask token (e.g. "<mask>")
mask = fill_mask.tokenizer.mask_token
# 3. Allow users to type [MASK]
sentence = sentence.replace("[MASK]", mask)
# 4. Validate presence of mask
if mask not in sentence:
return pd.DataFrame(
[["Error: please include `[MASK]` in your sentence.", 0.0]],
columns=["Sequence", "Score"]
)
# 5. Run the pipeline safely
try:
preds = fill_mask(sentence, top_k=top_k)
except PipelineException as e:
return pd.DataFrame([[f"Error: {str(e)}", 0.0]],
columns=["Sequence", "Score"])
# 6. Build a DataFrame from list-of-lists
rows = [[p["sequence"], round(p["score"], 3)] for p in preds]
return pd.DataFrame(rows, columns=["Sequence", "Score"])
with gr.Blocks(title="πŸ” Masked Word Predictor") as demo:
gr.Markdown(
"# πŸ” Masked Word Predictor\n"
"Enter a sentence with one `[MASK]` token and see the top-K completions."
)
with gr.Row():
sentence = gr.Textbox(
lines=2,
placeholder="e.g. The salon’s new color treatment is [MASK].",
label="Input Sentence"
)
top_k = gr.Slider(
minimum=1, maximum=10, step=1, value=5,
label="Top K Predictions"
)
predict_btn = gr.Button("Predict πŸ”", variant="primary")
results_df = gr.Dataframe(
headers=["Sequence", "Score"],
datatype=["str", "number"],
wrap=True,
interactive=False,
label="Predictions"
)
predict_btn.click(
fn=predict_mask,
inputs=[sentence, top_k],
outputs=results_df
)
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0")