Spaces:
Running
Running
File size: 1,482 Bytes
311f28b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 |
# ๐ Masked Word Predictor | CPU-only HF Space
import gradio as gr
from transformers import pipeline
# Load the fill-mask pipeline once at startup
fill_mask = pipeline("fill-mask", model="distilroberta-base", device=-1)
def predict_mask(sentence: str, top_k: int):
if "[MASK]" not in sentence:
return [{"sequence": "Error: include [MASK] in your sentence.", "score": 0.0}]
preds = fill_mask(sentence, top_k=top_k)
return [
{"sequence": p["sequence"], "score": round(p["score"], 3)}
for p in preds
]
with gr.Blocks(title="๐ Masked Word Predictor") as demo:
gr.Markdown(
"# ๐ Masked Word Predictor\n"
"Enter a sentence with one `[MASK]` token and see the modelโs top predictions."
)
with gr.Row():
sentence = gr.Textbox(
lines=2,
placeholder="The capital of France is [MASK].",
label="Input Sentence"
)
top_k = gr.Slider(
minimum=1, maximum=10, step=1, value=5,
label="Top K Predictions"
)
predict_btn = gr.Button("Predict", variant="primary")
results = gr.Dataframe(
headers=["sequence", "score"],
datatype=["str", "number"],
wrap=True,
interactive=False,
label="Predictions"
)
predict_btn.click(
predict_mask,
inputs=[sentence, top_k],
outputs=results
)
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0")
|