File size: 7,592 Bytes
a1951e5
 
 
 
 
 
 
 
99a7fbb
a1951e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7df9c64
 
 
 
 
a1951e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7df9c64
a1951e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import streamlit as st
import pandas as pd

from apis import ask, run_sql
from utils import format_sql


def main():
    st.title("πŸ’¬ Wren AI Cloud API Demo - SQL Generation")

    if "api_key" not in st.session_state or "project_id" not in st.session_state:
        st.error("Please enter your API Key and Project ID in the sidebar of Home page to get started.")
        return
    if not st.session_state.api_key or not st.session_state.project_id:
        st.error("Please enter your API Key and Project ID in the sidebar of Home page to get started.")
        return
    
    api_key = st.session_state.api_key
    project_id = st.session_state.project_id

    st.markdown('Using APIs: [Ask](https://wrenai.readme.io/reference/post_ask-1), [Run SQL](https://wrenai.readme.io/reference/cloud_post_run-sql)')

    # Sidebar for API configuration
    with st.sidebar:
        st.header("πŸ”§ Configuration")
        language = st.text_input(
            "Language",
            "English",
            help="Language of the response. Default is English."
        )
        sample_size = st.slider(
            "Sample Size", 
            min_value=100, 
            max_value=10000, 
            value=1000,
            step=100,
            help="Number of data points to include in results"
        )
        
    # Initialize chat history
    if "qa_messages" not in st.session_state:
        st.session_state.qa_messages = []
    if "qa_thread_id" not in st.session_state:
        st.session_state.qa_thread_id = ""

    # Display chat history
    for message in st.session_state.qa_messages:
        with st.chat_message(message["role"]):
            if message["role"] == "user":
                st.write(message["content"])
            else:
                st.write(message["content"])
                if "sql" in message:
                    with st.expander("πŸ” Generated SQL Query", expanded=False):
                        st.code(format_sql(message["sql"]), language="sql")
                        
                        # Add button to run SQL
                        if st.button("πŸ”„ Run SQL Query", key=f"run_sql_{message.get('message_id', 'unknown')}"):
                            with st.spinner("Executing SQL query..."):
                                sql_result, error = run_sql(api_key, project_id, message["sql"], st.session_state.qa_thread_id, sample_size)
                            
                            if sql_result:
                                data = sql_result.get("records", [])                                
                                if data:
                                    # Convert to DataFrame for better display
                                    df = pd.DataFrame(data)
                                    st.success("SQL query executed successfully!")
                                    st.dataframe(df, use_container_width=True)
                                else:
                                    st.info("Query executed but returned no data.")
                            else:
                                st.error(f"Error executing SQL: {error}")
                
                if "sql_results" in message:
                    st.subheader("πŸ” Query Results")
                    if message["sql_results"]:
                        st.dataframe(message["sql_results"], use_container_width=True)
                    else:
                        st.info("No results returned from the query.")

    # Chat input
    if prompt := st.chat_input("Ask a question about your data..."):
        # Add user message to chat history
        st.session_state.qa_messages.append({"role": "user", "content": prompt})
        
        # Display user message
        with st.chat_message("user"):
            st.write(prompt)

        # Generate response using ask API
        with st.chat_message("assistant"):
            with st.spinner("Generating answer..."):
                ask_response, error = ask(api_key, project_id, prompt, st.session_state.qa_thread_id, sample_size=sample_size, language=language)
            
            if ask_response:
                answer = ask_response.get("summary", "")
                sql_query = ask_response.get("sql", "")
                st.session_state.qa_thread_id = ask_response.get("threadId", "")
                
                if answer:
                    st.toast("Answer generated successfully!", icon="πŸŽ‰")
                    
                    # Create unique message ID
                    message_id = len(st.session_state.qa_messages)
                    
                    # Store the response
                    assistant_message = {
                        "role": "assistant",
                        "content": answer,
                        "message_id": message_id
                    }
                    
                    if sql_query:
                        assistant_message["sql"] = sql_query
                    
                    st.session_state.qa_messages.append(assistant_message)
                    st.write(answer)

                    # Display SQL query if available
                    if sql_query:
                        with st.expander("πŸ” Generated SQL Query", expanded=False):
                            st.code(format_sql(sql_query), language="sql")
                            
                            # Add button to run SQL
                            if st.button("πŸ”„ Run SQL Query", key=f"run_sql_{message_id}"):
                                with st.spinner("Executing SQL query..."):
                                    sql_result, error = run_sql(api_key, project_id, sql_query, st.session_state.qa_thread_id, sample_size)
                                
                                if sql_result:
                                    data = sql_result.get("records", [])                                    
                                    if data:
                                        # Convert to DataFrame for better display
                                        df = pd.DataFrame(data)
                                        st.success("SQL query executed successfully!")
                                        st.dataframe(df, use_container_width=True)
                                    else:
                                        st.info("Query executed but returned no data.")
                                else:
                                    st.error(f"Error executing SQL: {error}")
                else:
                    st.toast("No answer was generated. Please try rephrasing your question.", icon="πŸ€”")
                    assistant_message = {
                        "role": "assistant",
                        "content": "I couldn't generate an answer for your question. Please try rephrasing it or make sure it's related to your data."
                    }
                    st.session_state.qa_messages.append(assistant_message)
            else:
                st.toast(f"Error generating answer: {error}", icon="πŸ€”")
                assistant_message = {
                    "role": "assistant", 
                    "content": "Sorry, I couldn't process your request. Please check your API credentials and try again."
                }
                st.session_state.qa_messages.append(assistant_message)

    # Clear chat button
    if st.sidebar.button("🧹 Clear Chat History"):
        st.session_state.qa_messages = []
        st.session_state.qa_thread_id = ""
        st.rerun()


if __name__ == "__main__":
    main()