Spaces:
Running
Running
File size: 11,212 Bytes
7df9c64 99a7fbb 7df9c64 99a7fbb 7df9c64 99a7fbb 7df9c64 99a7fbb 7df9c64 99a7fbb 7df9c64 99a7fbb 7df9c64 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
import streamlit as st
import pandas as pd
import requests
import json
import time
from typing import Iterator, Dict, Any
from apis import stream_ask, run_sql
from utils import format_sql
def stream_ask_api(api_key: str, project_id: str, question: str, thread_id: str = "",
language: str = "English", sample_size: int = 1000) -> Iterator[Dict[str, Any]]:
"""Stream ask endpoint with proper SSE handling."""
try:
response, error = stream_ask(api_key, project_id, question, thread_id, language, sample_size)
if error:
raise Exception(error)
for line in response.iter_lines():
if line:
line_str = line.decode('utf-8')
if line_str.startswith('data: '):
data_str = line_str[6:] # Remove 'data: ' prefix
if data_str.strip() == '[DONE]':
break
try:
data = json.loads(data_str)
yield data
except json.JSONDecodeError:
continue
except requests.exceptions.RequestException as e:
yield {"error": str(e)}
def main():
st.title("π¬ Wren AI Cloud API Demo - Ask Streaming")
if "api_key" not in st.session_state or "project_id" not in st.session_state:
st.error("Please enter your API Key and Project ID in the sidebar of Home page to get started.")
return
if not st.session_state.api_key or not st.session_state.project_id:
st.error("Please enter your API Key and Project ID in the sidebar of Home page to get started.")
return
api_key = st.session_state.api_key
project_id = st.session_state.project_id
st.markdown('Using APIs: [Stream Ask](https://wrenai.readme.io/reference/post_stream-ask-1)')
# Sidebar for API configuration
with st.sidebar:
st.header("π§ Configuration")
language = st.text_input(
"Language",
"English",
help="Language of the response. Default is English."
)
sample_size = st.slider(
"Sample Size",
min_value=100,
max_value=10000,
value=1000,
step=100,
help="Number of data points to include in results"
)
# Initialize chat history
if "streaming_messages" not in st.session_state:
st.session_state.streaming_messages = []
if "streaming_thread_id" not in st.session_state:
st.session_state.streaming_thread_id = ""
# Display chat history
for message in st.session_state.streaming_messages:
with st.chat_message(message["role"]):
if message["role"] == "user":
st.text(message["content"])
else:
st.text(message["content"])
if "sql" in message:
with st.expander("= Generated SQL Query", expanded=False):
st.code(format_sql(message["sql"]), language="sql")
# Add button to run SQL
if st.button("π Run SQL Query", key=f"run_sql_{message.get('message_id', 'unknown')}"):
with st.spinner("Executing SQL query..."):
sql_result, error = run_sql(api_key, project_id, message["sql"], st.session_state.streaming_thread_id, sample_size)
if sql_result:
data = sql_result.get("records", [])
if data:
# Convert to DataFrame for better display
df = pd.DataFrame(data)
st.success("SQL query executed successfully!")
st.dataframe(df, use_container_width=True)
else:
st.info("Query executed but returned no data.")
else:
st.error(f"Error executing SQL: {error}")
# Chat input
if prompt := st.chat_input("Ask a question about your data..."):
# Add user message to chat history
st.session_state.streaming_messages.append({"role": "user", "content": prompt})
# Display user message
with st.chat_message("user"):
st.write(prompt)
# Generate response using stream ask API
with st.chat_message("assistant"):
# Create containers for streaming updates
status_container = st.empty()
progress_container = st.empty()
content_container = st.empty()
final_answer = ""
final_sql = ""
current_state = ""
# Stream the response
try:
for event in stream_ask_api(api_key, project_id, prompt, st.session_state.streaming_thread_id, sample_size=sample_size, language=language):
if "error" in event:
st.error(f"Error: {event['error']}")
break
# Handle different event types
if event.get("type") == "state":
current_state = event.get("data", {}).get("state", "")
rephrased_question = event.get("data", {}).get("rephrasedQuestion", "")
intent_reasoning = event.get("data", {}).get("intentReasoning", "")
retrieved_tables = event.get("data", {}).get("retrievedTables", "")
sql_generation_reasoning = event.get("data", {}).get("sqlGenerationReasoning", "")
current_state_message = f"π¬ {current_state}\n\n"
if rephrased_question:
current_state_message += f"\nRerephrased Question: \n{rephrased_question}\n"
if intent_reasoning:
current_state_message += f"\nIntent Reasoning: \n{intent_reasoning}\n"
if retrieved_tables:
current_state_message += f"\nRetrieved Tables: \n{retrieved_tables}\n"
if sql_generation_reasoning:
current_state_message += f"\nSQL Generation Reasoning: \n{sql_generation_reasoning}\n"
status_container.info(current_state_message)
elif event.get("type") == "content_block_delta":
delta = event.get("delta", {})
if delta.get("type") == "text_delta":
final_answer += delta.get("text", "")
content_container.text(final_answer)
elif event.get("type") == "message_stop":
# Extract final data from the event
if "summary" in event:
final_answer = event["summary"]
if "sql" in event:
final_sql = event["sql"]
if "threadId" in event:
st.session_state.streaming_thread_id = event["threadId"]
break
# Small delay to make streaming visible
time.sleep(0.1)
# Clear status and show final result
status_container.empty()
progress_container.empty()
if final_answer:
st.toast("Answer generated successfully!", icon="π")
# Create unique message ID
message_id = len(st.session_state.streaming_messages)
# Store the response
assistant_message = {
"role": "assistant",
"content": final_answer,
"message_id": message_id
}
if final_sql:
assistant_message["sql"] = final_sql
st.session_state.streaming_messages.append(assistant_message)
content_container.text(final_answer)
# Display SQL query if available
if final_sql:
with st.expander("=Generated SQL Query", expanded=False):
st.code(format_sql(final_sql), language="sql")
# Add button to run SQL
if st.button("π Run SQL Query", key=f"run_sql_{message_id}"):
with st.spinner("Executing SQL query..."):
sql_result, error = run_sql(api_key, project_id, final_sql, st.session_state.streaming_thread_id, sample_size)
if sql_result:
data = sql_result.get("records", [])
if data:
# Convert to DataFrame for better display
df = pd.DataFrame(data)
st.success("SQL query executed successfully!")
st.dataframe(df, use_container_width=True)
else:
st.info("Query executed but returned no data.")
else:
st.error(f"Error executing SQL: {error}")
else:
st.toast("No answer was generated. Please try rephrasing your question.", icon="π€")
assistant_message = {
"role": "assistant",
"content": "I couldn't generate an answer for your question. Please try rephrasing it or make sure it's related to your data."
}
st.session_state.streaming_messages.append(assistant_message)
content_container.text(assistant_message["content"])
except Exception as e:
st.error(f"Error during streaming: {str(e)}")
assistant_message = {
"role": "assistant",
"content": "Sorry, I couldn't process your request. Please check your API credentials and try again."
}
st.session_state.streaming_messages.append(assistant_message)
content_container.text(assistant_message["content"])
# Clear chat button
if st.sidebar.button("π§Ή Clear Chat History"):
st.session_state.streaming_messages = []
st.session_state.streaming_thread_id = ""
st.rerun()
if __name__ == "__main__":
main() |