File size: 11,212 Bytes
7df9c64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99a7fbb
7df9c64
99a7fbb
7df9c64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99a7fbb
7df9c64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99a7fbb
7df9c64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99a7fbb
7df9c64
 
 
 
 
 
 
 
99a7fbb
7df9c64
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import streamlit as st
import pandas as pd
import requests
import json
import time
from typing import Iterator, Dict, Any

from apis import stream_ask, run_sql
from utils import format_sql


def stream_ask_api(api_key: str, project_id: str, question: str, thread_id: str = "", 
                   language: str = "English", sample_size: int = 1000) -> Iterator[Dict[str, Any]]:
    """Stream ask endpoint with proper SSE handling."""
    try:
        response, error = stream_ask(api_key, project_id, question, thread_id, language, sample_size)
        if error:
            raise Exception(error)

        for line in response.iter_lines():
            if line:
                line_str = line.decode('utf-8')
                if line_str.startswith('data: '):
                    data_str = line_str[6:]  # Remove 'data: ' prefix
                    if data_str.strip() == '[DONE]':
                        break
                    try:
                        data = json.loads(data_str)
                        yield data
                    except json.JSONDecodeError:
                        continue
    except requests.exceptions.RequestException as e:
        yield {"error": str(e)}


def main():
    st.title("πŸ’¬ Wren AI Cloud API Demo - Ask Streaming")

    if "api_key" not in st.session_state or "project_id" not in st.session_state:
        st.error("Please enter your API Key and Project ID in the sidebar of Home page to get started.")
        return
    if not st.session_state.api_key or not st.session_state.project_id:
        st.error("Please enter your API Key and Project ID in the sidebar of Home page to get started.")
        return
    
    api_key = st.session_state.api_key
    project_id = st.session_state.project_id

    st.markdown('Using APIs: [Stream Ask](https://wrenai.readme.io/reference/post_stream-ask-1)')

    # Sidebar for API configuration
    with st.sidebar:
        st.header("πŸ”§ Configuration")
        language = st.text_input(
            "Language",
            "English",
            help="Language of the response. Default is English."
        )
        sample_size = st.slider(
            "Sample Size", 
            min_value=100, 
            max_value=10000, 
            value=1000,
            step=100,
            help="Number of data points to include in results"
        )
        
    # Initialize chat history
    if "streaming_messages" not in st.session_state:
        st.session_state.streaming_messages = []
    if "streaming_thread_id" not in st.session_state:
        st.session_state.streaming_thread_id = ""

    # Display chat history
    for message in st.session_state.streaming_messages:
        with st.chat_message(message["role"]):
            if message["role"] == "user":
                st.text(message["content"])
            else:
                st.text(message["content"])
                if "sql" in message:
                    with st.expander("= Generated SQL Query", expanded=False):
                        st.code(format_sql(message["sql"]), language="sql")
                        
                        # Add button to run SQL
                        if st.button("πŸ”„ Run SQL Query", key=f"run_sql_{message.get('message_id', 'unknown')}"):
                            with st.spinner("Executing SQL query..."):
                                sql_result, error = run_sql(api_key, project_id, message["sql"], st.session_state.streaming_thread_id, sample_size)
                            
                            if sql_result:
                                data = sql_result.get("records", [])                                
                                if data:
                                    # Convert to DataFrame for better display
                                    df = pd.DataFrame(data)
                                    st.success("SQL query executed successfully!")
                                    st.dataframe(df, use_container_width=True)
                                else:
                                    st.info("Query executed but returned no data.")
                            else:
                                st.error(f"Error executing SQL: {error}")

    # Chat input
    if prompt := st.chat_input("Ask a question about your data..."):
        # Add user message to chat history
        st.session_state.streaming_messages.append({"role": "user", "content": prompt})
        
        # Display user message
        with st.chat_message("user"):
            st.write(prompt)

        # Generate response using stream ask API
        with st.chat_message("assistant"):
            # Create containers for streaming updates
            status_container = st.empty()
            progress_container = st.empty()
            content_container = st.empty()
            
            final_answer = ""
            final_sql = ""
            current_state = ""
            
            # Stream the response
            try:
                for event in stream_ask_api(api_key, project_id, prompt, st.session_state.streaming_thread_id, sample_size=sample_size, language=language):
                    if "error" in event:
                        st.error(f"Error: {event['error']}")
                        break
                    
                    # Handle different event types
                    if event.get("type") == "state":
                        current_state = event.get("data", {}).get("state", "")
                        rephrased_question = event.get("data", {}).get("rephrasedQuestion", "")
                        intent_reasoning = event.get("data", {}).get("intentReasoning", "")
                        retrieved_tables = event.get("data", {}).get("retrievedTables", "")
                        sql_generation_reasoning = event.get("data", {}).get("sqlGenerationReasoning", "")
                        current_state_message = f"πŸ’¬ {current_state}\n\n"
                        if rephrased_question:
                            current_state_message += f"\nRerephrased Question: \n{rephrased_question}\n"
                        if intent_reasoning:
                            current_state_message += f"\nIntent Reasoning: \n{intent_reasoning}\n"
                        if retrieved_tables:
                            current_state_message += f"\nRetrieved Tables: \n{retrieved_tables}\n"
                        if sql_generation_reasoning:
                            current_state_message += f"\nSQL Generation Reasoning: \n{sql_generation_reasoning}\n"

                        status_container.info(current_state_message)
                    elif event.get("type") == "content_block_delta":
                        delta = event.get("delta", {})
                        if delta.get("type") == "text_delta":
                            final_answer += delta.get("text", "")
                            content_container.text(final_answer)
                    
                    elif event.get("type") == "message_stop":
                        # Extract final data from the event
                        if "summary" in event:
                            final_answer = event["summary"]
                        if "sql" in event:
                            final_sql = event["sql"]
                        if "threadId" in event:
                            st.session_state.streaming_thread_id = event["threadId"]
                        break
                    
                    # Small delay to make streaming visible
                    time.sleep(0.1)
                
                # Clear status and show final result
                status_container.empty()
                progress_container.empty()
                
                if final_answer:
                    st.toast("Answer generated successfully!", icon="πŸŽ‰")
                    
                    # Create unique message ID
                    message_id = len(st.session_state.streaming_messages)
                    
                    # Store the response
                    assistant_message = {
                        "role": "assistant",
                        "content": final_answer,
                        "message_id": message_id
                    }
                    
                    if final_sql:
                        assistant_message["sql"] = final_sql
                    
                    st.session_state.streaming_messages.append(assistant_message)
                    content_container.text(final_answer)

                    # Display SQL query if available
                    if final_sql:
                        with st.expander("=Generated SQL Query", expanded=False):
                            st.code(format_sql(final_sql), language="sql")
                            
                            # Add button to run SQL
                            if st.button("πŸ”„ Run SQL Query", key=f"run_sql_{message_id}"):
                                with st.spinner("Executing SQL query..."):
                                    sql_result, error = run_sql(api_key, project_id, final_sql, st.session_state.streaming_thread_id, sample_size)
                                
                                if sql_result:
                                    data = sql_result.get("records", [])                                    
                                    if data:
                                        # Convert to DataFrame for better display
                                        df = pd.DataFrame(data)
                                        st.success("SQL query executed successfully!")
                                        st.dataframe(df, use_container_width=True)
                                    else:
                                        st.info("Query executed but returned no data.")
                                else:
                                    st.error(f"Error executing SQL: {error}")
                else:
                    st.toast("No answer was generated. Please try rephrasing your question.", icon="πŸ€”")
                    assistant_message = {
                        "role": "assistant",
                        "content": "I couldn't generate an answer for your question. Please try rephrasing it or make sure it's related to your data."
                    }
                    st.session_state.streaming_messages.append(assistant_message)
                    content_container.text(assistant_message["content"])
            
            except Exception as e:
                st.error(f"Error during streaming: {str(e)}")
                assistant_message = {
                    "role": "assistant", 
                    "content": "Sorry, I couldn't process your request. Please check your API credentials and try again."
                }
                st.session_state.streaming_messages.append(assistant_message)
                content_container.text(assistant_message["content"])

    # Clear chat button
    if st.sidebar.button("🧹 Clear Chat History"):
        st.session_state.streaming_messages = []
        st.session_state.streaming_thread_id = ""
        st.rerun()


if __name__ == "__main__":
    main()