File size: 8,464 Bytes
c6c1e2b
e9af7e9
c6c1e2b
e9af7e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import streamlit as st
import requests

# Page configuration
st.set_page_config(
    page_title="Wren AI Cloud API Demo",
    page_icon="πŸ“Š",
    layout="wide"
)

def generate_sql(
    api_key: str,
    project_id: str,
    query: str,
    thread_id: str = "",
) -> dict:
    """Generate SQL from natural language query."""
    base_url = "https://cloud.getwren.ai/api/v1"
    endpoint = f"{base_url}/generate_sql"
    headers = {
        "Authorization": f"Bearer {api_key}",
        "Content-Type": "application/json"
    }
    payload = {
        "projectId": project_id,
        "question": query,
    }
    if thread_id:
        payload["threadId"] = thread_id
    
    try:
        response = requests.post(endpoint, json=payload, headers=headers)
        response.raise_for_status()
        return response.json()
    except requests.exceptions.RequestException as e:
        st.toast(f"Error generating SQL: {e}", icon="🚨")
        return {}

def generate_chart(
    api_key: str,
    project_id: str,
    question: str,
    sql: str,
    sample_size: int = 1000,
    thread_id: str = ""
) -> dict:
    """Generate a chart from query results."""
    base_url = "https://cloud.getwren.ai/api/v1"
    endpoint = f"{base_url}/generate_vega_chart"
    headers = {
        "Authorization": f"Bearer {api_key}",
        "Content-Type": "application/json"
    }
    payload = {
        "projectId": project_id,
        "question": question,
        "sql": sql,
        "sampleSize": sample_size
    }
    if thread_id:
        payload["threadId"] = thread_id
    
    try:
        response = requests.post(endpoint, json=payload, headers=headers)
        response.raise_for_status()
        return response.json()
    except requests.exceptions.RequestException as e:
        st.toast(f"Error generating chart: {e}", icon="🚨")
        return {}

def main():
    st.title("πŸ“Š Wren AI Cloud API Demo")
    st.markdown("Ask questions about your data and get both SQL queries and beautiful charts!")

    # Sidebar for API configuration
    with st.sidebar:
        st.header("πŸ”§ Configuration")
        api_key = st.text_input(
            "API Key", 
            type="password", 
            placeholder="sk-your-api-key-here",
            help="Enter your Wren AI Cloud API key"
        )
        project_id = st.text_input(
            "Project ID", 
            placeholder="1234",
            help="Enter your Wren AI Cloud project ID"
        )
        
        # Sample size configuration
        sample_size = st.slider(
            "Chart Sample Size", 
            min_value=100, 
            max_value=10000, 
            value=1000,
            step=100,
            help="Number of data points to include in charts"
        )

    # Main chat interface
    if not api_key or not project_id:
        st.warning("⚠️ Please enter your API Key and Project ID in the sidebar to get started.")
        st.info("""
        **How to get started:**
        1. Enter your Wren AI API Key in the sidebar
        2. Enter your Project ID
        3. Ask questions about your data in natural language
        4. Get SQL queries and interactive charts automatically!
        """)
        return

    # Initialize chat history
    if "messages" not in st.session_state:
        st.session_state.messages = []
    if "thread_id" not in st.session_state:
        st.session_state.thread_id = ""

    # Display chat history
    for message in st.session_state.messages:
        with st.chat_message(message["role"]):
            if message["role"] == "user":
                st.write(message["content"])
            else:
                st.write(message["content"])
                if "sql" in message:
                    with st.expander("πŸ“ Generated SQL Query", expanded=False):
                        st.code(message["sql"], language="sql")
                if "vega_spec" in message:
                    try:
                        with st.expander("πŸ“Š Chart Specification", expanded=False):
                            st.json(message["vega_spec"])
                        st.vega_lite_chart(message["vega_spec"])
                    except Exception as e:
                        st.toast(f"Error rendering chart: {e}", icon="🚨")

    # Chat input
    if prompt := st.chat_input("Ask a question about your data..."):
        # Add user message to chat history
        st.session_state.messages.append({"role": "user", "content": prompt})
        
        # Display user message
        with st.chat_message("user"):
            st.write(prompt)

        # Generate response
        with st.chat_message("assistant"):
            with st.spinner("Generating SQL query..."):
                sql_response = generate_sql(api_key, project_id, prompt, st.session_state.thread_id)
            
            if sql_response:
                sql_query = sql_response.get("sql", "")
                st.session_state.thread_id = sql_response.get("threadId", "")
                
                if sql_query:
                    st.toast("SQL query generated successfully!", icon="πŸŽ‰")
                    
                    # Store the response
                    assistant_message = {
                        "role": "assistant",
                        "content": f"I've generated a SQL query for your question: '{prompt}'",
                        "sql": sql_query
                    }
                    st.session_state.messages.append(assistant_message)
                    st.write(assistant_message["content"])

                    # Display SQL query
                    with st.expander("πŸ“ Generated SQL Query", expanded=False):
                        st.code(sql_query, language="sql")
                    
                    # Generate chart
                    with st.spinner("Generating chart..."):
                        chart_response = generate_chart(api_key, project_id, prompt, sql_query, sample_size, st.session_state.thread_id)
                    
                    if chart_response:
                        vega_spec = chart_response.get("vegaSpec", {})
                        if vega_spec:
                            st.toast("Chart generated successfully!", icon="πŸŽ‰")
                        
                            assistant_message = {
                                "role": "assistant",
                                "content": f"I've generated a Chart for your question: '{prompt}'",
                                "vega_spec": vega_spec
                            }
                            st.session_state.messages.append(assistant_message)
                            st.write(assistant_message["content"])

                            # Display chart
                            try:
                                # Show chart specification in expander
                                with st.expander("πŸ“Š Chart Specification", expanded=False):
                                    st.json(vega_spec)
                                st.vega_lite_chart(vega_spec)
                            except Exception as e:
                                st.toast(f"Error rendering chart: {e}", icon="🚨")
                        else:
                            st.toast("Failed to generate chart. Please check your query and try again.", icon="🚨")
                    else:
                        st.toast("Failed to generate chart. Please check your query and try again.", icon="🚨")
                else:
                    st.toast("No SQL query was generated. Please try rephrasing your question.", icon="🚨")
                    assistant_message = {
                        "role": "assistant",
                        "content": "I couldn't generate a SQL query for your question. Please try rephrasing it or make sure it's related to your data."
                    }
                    st.session_state.messages.append(assistant_message)
            else:
                assistant_message = {
                    "role": "assistant", 
                    "content": "Sorry, I couldn't process your request. Please check your API credentials and try again."
                }
                st.session_state.messages.append(assistant_message)

    # Clear chat button
    if st.sidebar.button("πŸ—‘οΈ Clear Chat History"):
        st.session_state.messages = []
        st.session_state.thread_id = ""
        st.rerun()

if __name__ == "__main__":
    main()