Spaces:
Running
Running
from chromadb import PersistentClient, EmbeddingFunction, Embeddings | |
from llama_index.embeddings.huggingface import HuggingFaceEmbedding | |
from typing import List | |
import json | |
MODEL_NAME = 'dunzhang/stella_en_1.5B_v5' | |
DB_PATH = './.chroma_db' | |
FAQ_FILE_PATH= './data/FAQ.json' | |
INVENTORY_FILE_PATH = './data/inventory.json' | |
class Product: | |
def __init__(self, name: str, id: str, description: str, type: str, price: float, quantity: int): | |
self.name = name | |
self.id = id | |
self.description = description | |
self.type = type | |
self.price = price | |
self.quantity = quantity | |
class QuestionAnswerPairs: | |
def __init__(self, question: str, answer: str): | |
self.question = question | |
self.answer = answer | |
class CustomEmbeddingClass(EmbeddingFunction): | |
def __init__(self, model_name): | |
self.embedding_model = HuggingFaceEmbedding(model_name=MODEL_NAME) | |
def __call__(self, input_texts: List[str]) -> Embeddings: | |
return [self.embedding_model.get_text_embedding(text) for text in input_texts] | |
class FAQCollection: | |
def __init__(self): | |
self.documents = [] | |
self.ids = [] | |
self.metadatas = [] | |
def add(self, documents, ids, metadatas): | |
self.documents.extend(documents) | |
self.ids.extend(ids) | |
self.metadatas.extend(metadatas) | |
def display(self): | |
for doc, id_, meta in zip(self.documents, self.ids, self.metadatas): | |
print(f"ID: {id_}, Document: {doc}, Metadata: {meta}") | |
# Define the InventoryCollection class | |
class InventoryCollection: | |
def __init__(self): | |
self.documents = [] | |
self.ids = [] | |
self.metadatas = [] | |
def add(self, documents, ids, metadatas): | |
self.documents.extend(documents) | |
self.ids.extend(ids) | |
self.metadatas.extend(metadatas) | |
def display(self): | |
for doc, id_, meta in zip(self.documents, self.ids, self.metadatas): | |
print(f"ID: {id_}, Document: {doc}, Metadata: {meta}") | |
class FlowerShopVectorStore: | |
def __init__(self): | |
db = PersistentClient(path=DB_PATH) | |
custom_embedding_function = CustomEmbeddingClass(MODEL_NAME) | |
self.faq_collection = db.get_or_create_collection(name='FAQ', embedding_function=custom_embedding_function) | |
self.inventory_collection = db.get_or_create_collection(name='Inventory', embedding_function=custom_embedding_function) | |
if self.faq_collection.count() == 0: | |
try : | |
self._load_faq_collection(FAQ_FILE_PATH) | |
except Exception as e: | |
raise ValueError(e) | |
if self.inventory_collection.count() == 0: | |
self._load_inventory_collection(INVENTORY_FILE_PATH) | |
def _load_faq_collection(self, faq_file_path: str): | |
try: | |
with open(faq_file_path, 'r') as f: | |
faqs = json.load(f) | |
# Create an instance of FAQCollection | |
obj_faq_collection = FAQCollection() | |
obj_faq_collection.add( | |
documents=[faq['question'] for faq in faqs] + [faq['answer'] for faq in faqs], | |
ids=[str(i) for i in range(0, 2*len(faqs))], | |
metadatas = faqs + faqs | |
) | |
self.faq_collection = obj_faq_collection | |
except Exception as ex: | |
raise ValueError(ex) | |
def _load_inventory_collection(self, inventory_file_path: str): | |
with open(inventory_file_path, 'r') as f: | |
inventories = json.load(f) | |
# Create an instance of InventoryCollection | |
obj_inventory_collection = InventoryCollection() | |
obj_inventory_collection.add( | |
documents=[inventory['description'] for inventory in inventories], | |
ids=[str(i) for i in range(0, len(inventories))], | |
metadatas = inventories | |
) | |
self.inventory_collection = obj_inventory_collection | |
def query_faqs(self, query: str): | |
return self.faq_collection.query(query_texts=[query], n_results=5) | |
def query_inventories(self, query: str): | |
return self.inventory_collection.query(query_texts=[query], n_results=5) |