import gradio as gr from pydub import AudioSegment from faster_whisper import WhisperModel import os model = WhisperModel("openai/whisper-large-v3-turbo", compute_type="int8") def convert_to_wav(file_path): audio = AudioSegment.from_file(file_path) audio = audio.set_frame_rate(16000).set_channels(1).set_sample_width(2) out_path = file_path.replace(".", "_ready.") audio.export(out_path, format="wav") return out_path def detect_language(audio_file): wav = convert_to_wav(audio_file.name) segments, info = model.transcribe(wav) transcript = "\n".join([seg.text for seg in segments]) return f"🌐 Language: {info.language}\n\nšŸ“ Transcript:\n{transcript}" gr.Interface(fn=detect_language, inputs=gr.Audio(type="filepath"), outputs="text", title="šŸŽ§ Audio Language Detector", description="Drop any MP3/WAV/FLAC to identify spoken language & get transcript." ).launch()