test-two / app.py
gauri-sharan's picture
Update app.py
d85fa29 verified
raw
history blame
4.3 kB
import gradio as gr
from byaldi import RAGMultiModalModel
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
from qwen_vl_utils import process_vision_info
import torch
from PIL import Image
import os
import traceback
import re
# Load models
rag_model = RAGMultiModalModel.from_pretrained("vidore/colpali")
qwen_model = Qwen2VLForConditionalGeneration.from_pretrained(
"Qwen/Qwen2-VL-7B-Instruct", trust_remote_code=True, torch_dtype=torch.bfloat16
)
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct", trust_remote_code=True)
extracted_text = "" # Store the extracted text globally for keyword search
def ocr_and_extract(image, text_query=None):
global extracted_text
try:
# Save the uploaded image temporarily
temp_image_path = "temp_image.jpg"
image.save(temp_image_path)
# Index the image with Byaldi
rag_model.index(
input_path=temp_image_path,
index_name="image_index",
store_collection_with_index=False,
overwrite=True
)
# Perform the search query on the indexed image
results = rag_model.search(text_query, k=1)
# Prepare the input for Qwen2-VL
image_data = Image.open(temp_image_path)
messages = [
{
"role": "user",
"content": [
{"type": "image", "image": image_data},
{"type": "text", "text": text_query},
],
}
]
# Process input for Qwen2-VL
text_input = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
image_inputs, _ = process_vision_info(messages)
inputs = processor(
text=[text_input],
images=image_inputs,
padding=True,
return_tensors="pt",
)
qwen_model.to("cuda")
inputs = {k: v.to("cuda") for k, v in inputs.items()}
# Generate the output with Qwen2-VL
generated_ids = qwen_model.generate(**inputs, max_new_tokens=50)
output_text = processor.batch_decode(generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)
# Store the extracted text for keyword search
extracted_text = output_text[0]
os.remove(temp_image_path)
return extracted_text
except Exception as e:
error_message = str(e)
traceback.print_exc()
return f"Error: {error_message}"
def search_keywords(keyword):
global extracted_text
if not extracted_text:
return "No text extracted yet. Please upload an image."
# Perform basic keyword search within the extracted text
if re.search(rf"\b{re.escape(keyword)}\b", extracted_text, re.IGNORECASE):
highlighted_text = re.sub(rf"({re.escape(keyword)})", r"<mark>\1</mark>", extracted_text, flags=re.IGNORECASE)
return f"Keyword found! {highlighted_text}"
else:
return "Keyword not found in the extracted text."
# Gradio interface
image_input = gr.Image(type="pil")
text_output = gr.Textbox(label="Extracted Text", interactive=True)
keyword_search = gr.Textbox(label="Enter keywords to search")
search_button = gr.Button("Search Keywords")
search_output = gr.HTML()
extract_button = gr.Button("Extract Text")
# Layout update
iface = gr.Interface(
fn=ocr_and_extract,
inputs=[image_input],
outputs=[text_output],
title="Image OCR with Byaldi + Qwen2-VL",
description="Upload an image containing Hindi and English text for OCR. Then, search for specific keywords.",
)
# Keyword search layout
iface_search = gr.Interface(
fn=search_keywords,
inputs=[keyword_search],
outputs=[search_output],
)
# Move extract button above the text output
def combined_interface(image, keyword):
ocr_text = ocr_and_extract(image)
search_result = search_keywords(keyword)
return ocr_text, search_result
combined_iface = gr.Interface(
fn=combined_interface,
inputs=[image_input, keyword_search],
outputs=[text_output, search_output],
live=True,
title="Image OCR & Keyword Search",
description="Extract text from the image and search for specific keywords."
)
# Launch the app
combined_iface.launch()