File size: 3,619 Bytes
2f3144c
 
 
 
 
 
 
 
3ef82d2
2f3144c
7508b05
 
2f3144c
3ef82d2
7508b05
3ef82d2
2f3144c
cacc570
 
 
7508b05
 
cacc570
2f3144c
 
 
 
7508b05
 
2f3144c
 
 
7508b05
2f3144c
 
 
 
7508b05
2f3144c
7508b05
 
2f3144c
7508b05
 
 
2be66f7
 
cacc570
2be66f7
 
 
7508b05
 
 
 
 
 
 
 
 
 
cacc570
 
7508b05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import gradio as gr
from byaldi import RAGMultiModalModel
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
from qwen_vl_utils import process_vision_info
import torch
from PIL import Image
import os
import traceback
import spaces

# Load the models
rag_model = RAGMultiModalModel.from_pretrained("vidore/colpali")
qwen_model = Qwen2VLForConditionalGeneration.from_pretrained(
    "Qwen/Qwen2-VL-7B-Instruct", trust_remote_code=True, torch_dtype=torch.bfloat16
)
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct", trust_remote_code=True)

# Global variable to store extracted text
extracted_text = ""

@spaces.GPU(duration=120)
def ocr_and_extract(image, text_query):
    global extracted_text
    try:
        temp_image_path = "temp_image.jpg"
        image.save(temp_image_path)

        rag_model.index(input_path=temp_image_path, index_name="image_index", store_collection_with_index=False, overwrite=True)
        results = rag_model.search(text_query, k=1)

        image_data = Image.open(temp_image_path)
        messages = [
            {"role": "user", "content": [{"type": "image", "image": image_data}, {"type": "text", "text": text_query}]}
        ]

        text_input = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
        image_inputs, _ = process_vision_info(messages)
        inputs = processor(text=[text_input], images=image_inputs, padding=True, return_tensors="pt")

        qwen_model.to("cuda")
        inputs = {k: v.to("cuda") for k, v in inputs.items()}
        generated_ids = qwen_model.generate(**inputs, max_new_tokens=50)
        output_text = processor.batch_decode(generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)
        
        extracted_text = output_text[0]
        os.remove(temp_image_path)

        return extracted_text

    except Exception as e:
        traceback.print_exc()
        return f"Error: {str(e)}"

def keyword_search(keywords):
    if extracted_text:
        found_keywords = [word for word in keywords.split() if word in extracted_text]
        if found_keywords:
            return f"Keywords found: {', '.join(found_keywords)}"
        else:
            return "No matching keywords found."
    else:
        return "No text extracted yet. Please upload an image."

# Interface Layout
extract_text_button = gr.Button("Extract Text")
extracted_text_box = gr.Textbox(label="Extracted Text", placeholder="Text will appear here...", interactive=False)
keyword_search_box = gr.Textbox(label="Enter keywords to search", placeholder="Type keywords here...")
search_results = gr.Textbox(label="Search Results", interactive=False)

# Re-order the components: Extract Text button goes above Extracted Text box
iface = gr.Interface(
    fn=ocr_and_extract,
    inputs=[gr.Image(type="pil"), gr.Textbox(label="Enter your query (optional)")],
    outputs=[extracted_text_box],
    title="Image OCR with Byaldi + Qwen2-VL",
    description="Upload an image (JPEG/PNG) containing Hindi and English text for OCR."
)

# Layout for keyword search
search_interface = gr.Interface(
    fn=keyword_search,
    inputs=[keyword_search_box],
    outputs=[search_results],
    title="Keyword Search within Extracted Text",
    description="Enter keywords to search within the extracted text."
)

# Combining both interfaces with keyword search on the same page
combined_interface = gr.Blocks()
with combined_interface:
    extract_text_button.render()
    extracted_text_box.render()
    keyword_search_box.render()
    search_results.render()

combined_interface.launch()