# from ultralytics import YOLO import os import io import base64 import time from PIL import Image, ImageDraw, ImageFont import json import requests import ollama # utility function import os from openai import AzureOpenAI import json import sys import os import cv2 import numpy as np # %matplotlib inline from matplotlib import pyplot as plt import easyocr from paddleocr import PaddleOCR reader = easyocr.Reader(['en']) paddle_ocr = PaddleOCR( lang='en', # other lang also available use_angle_cls=False, use_gpu=False, # using cuda will conflict with pytorch in the same process show_log=False, max_batch_size=1024, use_dilation=True, # improves accuracy det_db_score_mode='slow', # improves accuracy rec_batch_num=1024) import time import base64 import os import ast import torch from typing import Tuple, List, Union from torchvision.ops import box_convert import re from torchvision.transforms import ToPILImage import supervision as sv import torchvision.transforms as T from util.box_annotator import BoxAnnotator def get_caption_model_processor(model_name, model_name_or_path="Salesforce/blip2-opt-2.7b", device=None): if not device: device = "cuda" if torch.cuda.is_available() else "cpu" if model_name == "blip2": from transformers import Blip2Processor, Blip2ForConditionalGeneration processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b") if device == 'cpu': model = Blip2ForConditionalGeneration.from_pretrained( model_name_or_path, device_map=None, torch_dtype=torch.float32 ) else: model = Blip2ForConditionalGeneration.from_pretrained( model_name_or_path, device_map=None, torch_dtype=torch.float16 ).to(device) elif model_name == "florence": from transformers import AutoProcessor, AutoModelForCausalLM processor = AutoProcessor.from_pretrained("microsoft/Florence-base", trust_remote_code=True) if device == 'cpu': model = AutoModelForCausalLM.from_pretrained("microsoft/Florence-base", torch_dtype=torch.float32, trust_remote_code=True) else: model = AutoModelForCausalLM.from_pretrained("microsoft/Florence-base", torch_dtype=torch.float16, trust_remote_code=True).to(device) elif model_name == "ollama": return {"model": None, "processor": None} elif model_name == "florence2": from transformers import AutoProcessor, AutoModelForCausalLM processor = AutoProcessor.from_pretrained("microsoft/Florence-2-base", trust_remote_code=True) if device == 'cpu': model = AutoModelForCausalLM.from_pretrained(model_name_or_path, torch_dtype=torch.float32, trust_remote_code=True) else: model = AutoModelForCausalLM.from_pretrained(model_name_or_path, torch_dtype=torch.float16, trust_remote_code=True).to(device) return {'model': model.to(device), 'processor': processor} def get_yolo_model(model_path): from ultralytics import YOLO # Load the model. model = YOLO(model_path) return model @torch.inference_mode() def get_parsed_content_icon(filtered_boxes, starting_idx, image_source, caption_model_processor, prompt=None, batch_size=128): parsed_content_icon = [] # Number of samples per batch, --> 128 roughly takes 4 GB of GPU memory for florence v2 model to_pil = ToPILImage() if starting_idx: non_ocr_boxes = filtered_boxes[starting_idx:] else: non_ocr_boxes = filtered_boxes croped_pil_image = [] for i, coord in enumerate(non_ocr_boxes): try: xmin, xmax = int(coord[0]*image_source.shape[1]), int(coord[2]*image_source.shape[1]) ymin, ymax = int(coord[1]*image_source.shape[0]), int(coord[3]*image_source.shape[0]) cropped_image = image_source[ymin:ymax, xmin:xmax, :] cropped_image = cv2.resize(cropped_image, (64, 64)) croped_pil_image.append(to_pil(cropped_image)) except: continue model, processor = caption_model_processor['model'], caption_model_processor['processor'] if not prompt: if 'florence' in model.config.name_or_path: prompt = "" else: prompt = "The image shows" generated_texts = [] device = model.device for i in range(0, len(croped_pil_image), batch_size): start = time.time() batch = croped_pil_image[i:i+batch_size] t1 = time.time() if model.device.type == 'cuda': inputs = processor(images=batch, text=[prompt]*len(batch), return_tensors="pt", do_resize=False).to(device=device, dtype=torch.float16) else: inputs = processor(images=batch, text=[prompt]*len(batch), return_tensors="pt").to(device=device) # 显式生成 input_ids text_inputs = processor.tokenizer([prompt]*len(batch), return_tensors="pt", padding=True) inputs['input_ids'] = text_inputs['input_ids'].to(device) if 'attention_mask' not in inputs: inputs['attention_mask'] = text_inputs['attention_mask'].to(device) # 尝试添加 decoder_input_ids bos_token_id = processor.tokenizer.bos_token_id # 获取 BOS token ID if bos_token_id is None: # 如果 BOS token ID 为 None,则使用 EOS token ID 作为 fallback bos_token_id = processor.tokenizer.eos_token_id decoder_input_ids = torch.tensor([[bos_token_id] * len(batch)]).T.to(device) # 创建 decoder_input_ids,形状为 (batch_size, 1) inputs['decoder_input_ids'] = decoder_input_ids # 将 decoder_input_ids 添加到 inputs 字典 print("Before model.generate call:") print(f" Input attention_mask shape: {inputs['attention_mask'].shape if 'attention_mask' in inputs else 'No attention_mask in inputs'}") print(f" Input pixel_values shape: {inputs['pixel_values'].shape if 'pixel_values' in inputs else 'No pixel_values in inputs'}") print(f" Input input_ids shape: {inputs['input_ids'].shape if 'input_ids' in inputs else 'No input_ids in inputs'}") print(f" Full inputs dictionary: {inputs}") print(f" Inputs dictionary keys: {inputs.keys()}") # 打印 inputs 字典的键 if 'florence' in model.config.name_or_path: generated_ids = model.generate(**inputs, max_length=100, num_beams=5, no_repeat_ngram_size=2, early_stopping=True, num_return_sequences=1) # temperature=0.01, do_sample=True, elif 'blip2' in model.config.name_or_path: generated_ids = model.generate(**inputs, max_new_tokens=20) elif 'phi3_v' in model.config.model_type: generated_ids = model.generate(**inputs, max_new_tokens=50) else: # clip-tag and mocov3 generated_ids = model(**inputs) print("After model.generate call:") # 添加提示信息 if isinstance(generated_ids, tuple): # 处理不同模型输出 generated_ids = generated_ids[0] # 假设第一个元素是 generated_ids print(f" Generated IDs object: {generated_ids}") # 打印 generated_ids 对象 print(f" Generated IDs shape: {generated_ids.sequences.shape}") # 修改为访问 sequences 属性 generated_ids_for_decode = generated_ids.sequences # 获取 sequences 属性用于解码 generated_texts_batch = processor.batch_decode(generated_ids_for_decode, skip_special_tokens=True) # 使用 sequences 属性进行解码 generated_texts.extend(generated_texts_batch) end = time.time() print(f"batch {i//batch_size} takes {end-start:.2f} seconds, infer time {end-t1:.2f} seconds, batch size {len(batch)}, generated text: {generated_texts_batch}") parsed_content_icon = generated_texts # 先进行赋值 return parsed_content_icon # 然后返回 parsed_content_icon def get_parsed_content_icon_phi3v(filtered_boxes, ocr_bbox, image_source, caption_model_processor): to_pil = ToPILImage() if ocr_bbox: non_ocr_boxes = filtered_boxes[len(ocr_bbox):] else: non_ocr_boxes = filtered_boxes croped_pil_image = [] for i, coord in enumerate(non_ocr_boxes): xmin, xmax = int(coord[0]*image_source.shape[1]), int(coord[2]*image_source.shape[1]) ymin, ymax = int(coord[1]*image_source.shape[0]), int(coord[3]*image_source.shape[0]) cropped_image = image_source[ymin:ymax, xmin:xmax, :] croped_pil_image.append(to_pil(cropped_image)) model, processor = caption_model_processor['model'], caption_model_processor['processor'] device = model.device messages = [{"role": "user", "content": "<|image_1|>\ndescribe the icon in one sentence"}] prompt = processor.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) batch_size = 5 # Number of samples per batch generated_texts = [] for i in range(0, len(croped_pil_image), batch_size): images = croped_pil_image[i:i+batch_size] image_inputs = [processor.image_processor(x, return_tensors="pt") for x in images] inputs ={'input_ids': [], 'attention_mask': [], 'pixel_values': [], 'image_sizes': []} texts = [prompt] * len(images) for i, txt in enumerate(texts): input = processor._convert_images_texts_to_inputs(image_inputs[i], txt, return_tensors="pt") inputs['input_ids'].append(input['input_ids']) inputs['attention_mask'].append(input['attention_mask']) inputs['pixel_values'].append(input['pixel_values']) inputs['image_sizes'].append(input['image_sizes']) max_len = max([x.shape[1] for x in inputs['input_ids']]) for i, v in enumerate(inputs['input_ids']): inputs['input_ids'][i] = torch.cat([processor.tokenizer.pad_token_id * torch.ones(1, max_len - v.shape[1], dtype=torch.long), v], dim=1) inputs['attention_mask'][i] = torch.cat([torch.zeros(1, max_len - v.shape[1], dtype=torch.long), inputs['attention_mask'][i]], dim=1) inputs_cat = {k: torch.concatenate(v).to(device) for k, v in inputs.items()} generation_args = { "max_new_tokens": 25, "temperature": 0.01, "do_sample": False, } generate_ids = model.generate(**inputs_cat, eos_token_id=processor.tokenizer.eos_token_id, **generation_args) # # remove input tokens generate_ids = generate_ids[:, inputs_cat['input_ids'].shape[1]:] response = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False) response = [res.strip('\n').strip() for res in response] generated_texts.extend(response) return generated_texts def remove_overlap(boxes, iou_threshold, ocr_bbox=None): assert ocr_bbox is None or isinstance(ocr_bbox, List) def box_area(box): return (box[2] - box[0]) * (box[3] - box[1]) def intersection_area(box1, box2): x1 = max(box1[0], box2[0]) y1 = max(box1[1], box2[1]) x2 = min(box1[2], box2[2]) y2 = min(box1[3], box2[3]) return max(0, x2 - x1) * max(0, y2 - y1) def IoU(box1, box2): intersection = intersection_area(box1, box2) union = box_area(box1) + box_area(box2) - intersection + 1e-6 if box_area(box1) > 0 and box_area(box2) > 0: ratio1 = intersection / box_area(box1) ratio2 = intersection / box_area(box2) else: ratio1, ratio2 = 0, 0 return max(intersection / union, ratio1, ratio2) def is_inside(box1, box2): # return box1[0] >= box2[0] and box1[1] >= box2[1] and box1[2] <= box2[2] and box1[3] <= box2[3] intersection = intersection_area(box1, box2) ratio1 = intersection / box_area(box1) return ratio1 > 0.95 boxes = boxes.tolist() filtered_boxes = [] if ocr_bbox: filtered_boxes.extend(ocr_bbox) # print('ocr_bbox!!!', ocr_bbox) for i, box1 in enumerate(boxes): # if not any(IoU(box1, box2) > iou_threshold and box_area(box1) > box_area(box2) for j, box2 in enumerate(boxes) if i != j): is_valid_box = True for j, box2 in enumerate(boxes): # keep the smaller box if i != j and IoU(box1, box2) > iou_threshold and box_area(box1) > box_area(box2): is_valid_box = False break if is_valid_box: # add the following 2 lines to include ocr bbox if ocr_bbox: # only add the box if it does not overlap with any ocr bbox if not any(IoU(box1, box3) > iou_threshold and not is_inside(box1, box3) for k, box3 in enumerate(ocr_bbox)): filtered_boxes.append(box1) else: filtered_boxes.append(box1) return torch.tensor(filtered_boxes) def remove_overlap_new(boxes, iou_threshold, ocr_bbox=None): if not ocr_bbox: return boxes def box_area(box): return (box[2] - box[0]) * (box[3] - box[1]) def intersection_area(box1, box2): x1 = max(box1[0], box2[0]) y1 = max(box1[1], box2[1]) x2 = min(box1[2], box2[2]) y2 = min(box1[3], box2[3]) return max(0, x2 - x1) * max(0, y2 - y1) def IoU(box1, box2): intersection = intersection_area(box1, box2) union = box_area(box1) + box_area(box2) - intersection + 1e-6 if box_area(box1) > 0 and box_area(box2) > 0: ratio1 = intersection / box_area(box1) ratio2 = intersection / box_area(box2) else: ratio1, ratio2 = 0, 0 return max(intersection / union, ratio1, ratio2) def is_inside(box1, box2): intersection = intersection_area(box1, box2) ratio1 = intersection / box_area(box1) return ratio1 > 0.80 # 可调整阈值 filtered_boxes = [] if ocr_bbox: filtered_boxes.extend(ocr_bbox) for i, box1_elem in enumerate(boxes): box1 = box1_elem['bbox'] is_valid_box = True for j, box2_elem in enumerate(boxes): box2 = box2_elem['bbox'] if i != j and IoU(box1, box2) > iou_threshold and box_area(box1) > box_area(box2): is_valid_box = False break if is_valid_box: if ocr_bbox: box_added = False ocr_labels = '' indices_to_remove = [] # 存储需要移除的 ocr_bbox 元素的索引 for k, box3_elem in enumerate(ocr_bbox): if not box_added: box3 = box3_elem['bbox'] if is_inside(box3, box1): try: ocr_labels += box3_elem['content'] + ' ' indices_to_remove.append(k) # 记录索引 except: continue elif is_inside(box1, box3): box_added = True break else: continue # 逆序移除元素,避免索引错位 for index in sorted(indices_to_remove, reverse=True): filtered_boxes.pop(index) if not box_added: if ocr_labels: filtered_boxes.append({'type': 'icon', 'bbox': box1_elem['bbox'], 'interactivity': True, 'content': ocr_labels, 'source':'box_yolo_content_ocr'}) else: filtered_boxes.append({'type': 'icon', 'bbox': box1_elem['bbox'], 'interactivity': True, 'content': None, 'source':'box_yolo_content_yolo'}) else: filtered_boxes.append(box1_elem) # 修改:添加box1_elem而不是box1 return filtered_boxes def load_image(image_path: str) -> Tuple[np.array, torch.Tensor]: transform = T.Compose( [ T.RandomResize([800], max_size=1333), T.ToTensor(), T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), ] ) image_source = Image.open(image_path).convert("RGB") image = np.asarray(image_source) image_transformed, _ = transform(image_source, None) return image, image_transformed def annotate(image_source: np.ndarray, boxes: torch.Tensor, logits: torch.Tensor, phrases: List[str], text_scale: float, text_padding=5, text_thickness=2, thickness=3) -> np.ndarray: """ This function annotates an image with bounding boxes and labels. Parameters: image_source (np.ndarray): The source image to be annotated. boxes (torch.Tensor): A tensor containing bounding box coordinates. in cxcywh format, pixel scale logits (torch.Tensor): A tensor containing confidence scores for each bounding box. phrases (List[str]): A list of labels for each bounding box. text_scale (float): The scale of the text to be displayed. 0.8 for mobile/web, 0.3 for desktop # 0.4 for mind2web Returns: np.ndarray: The annotated image. """ h, w, _ = image_source.shape boxes = boxes * torch.Tensor([w, h, w, h]) xyxy = box_convert(boxes=boxes, in_fmt="cxcywh", out_fmt="xyxy").numpy() xywh = box_convert(boxes=boxes, in_fmt="cxcywh", out_fmt="xywh").numpy() detections = sv.Detections(xyxy=xyxy) labels = [f"{phrase}" for phrase in range(boxes.shape[0])] box_annotator = BoxAnnotator(text_scale=text_scale, text_padding=text_padding,text_thickness=text_thickness,thickness=thickness) # 0.8 for mobile/web, 0.3 for desktop # 0.4 for mind2web annotated_frame = image_source.copy() annotated_frame = box_annotator.annotate(scene=annotated_frame, detections=detections, labels=labels, image_size=(w,h)) label_coordinates = {f"{phrase}": v for phrase, v in zip(phrases, xywh)} return annotated_frame, label_coordinates def predict(model, image, caption, box_threshold, text_threshold): """ Use huggingface model to replace the original model """ model, processor = model['model'], model['processor'] device = model.device inputs = processor(images=image, text=caption, return_tensors="pt").to(device) with torch.no_grad(): outputs = model(**inputs) results = processor.post_process_grounded_object_detection( outputs, inputs.input_ids, box_threshold=box_threshold, # 0.4, text_threshold=text_threshold, # 0.3, target_sizes=[image.size[::-1]] )[0] boxes, logits, phrases = results["boxes"], results["scores"], results["labels"] return boxes, logits, phrases def predict_yolo(model, image, box_threshold, imgsz, scale_img, iou_threshold=0.7): """ Use huggingface model to replace the original model """ # model = model['model'] if scale_img: result = model.predict( source=image, conf=box_threshold, imgsz=imgsz, iou=iou_threshold, # default 0.7 ) else: result = model.predict( source=image, conf=box_threshold, iou=iou_threshold, # default 0.7 ) boxes = result[0].boxes.xyxy#.tolist() # in pixel space conf = result[0].boxes.conf phrases = [str(i) for i in range(len(boxes))] return boxes, conf, phrases def int_box_area(box, w, h): x1, y1, x2, y2 = box int_box = [int(x1*w), int(y1*h), int(x2*w), int(y2*h)] area = (int_box[2] - int_box[0]) * (int_box[3] - int_box[1]) return area def get_som_labeled_img(image_source: Union[str, Image.Image], model=None, BOX_TRESHOLD=0.01, output_coord_in_ratio=False, ocr_bbox=None, text_scale=0.4, text_padding=5, draw_bbox_config=None, caption_model_processor=None, ocr_text=[], use_local_semantics=True, iou_threshold=0.9,prompt=None, scale_img=False, imgsz=None, batch_size=128): """Process either an image path or Image object Args: image_source: Either a file path (str) or PIL Image object ... """ print(f"get_som_labeled_img 开始:ocr_bbox = {ocr_bbox}") print(f"ocr_text 类型:{type(ocr_text)}") print(f"ocr_text 内容:{ocr_text}") (ocr_text, ocr_bbox) = check_ocr_box(image_source, display_img=False, output_bb_format='xywh', goal_filtering=None, easyocr_args=None, use_paddleocr=False) # 检查 ocr_bbox 是否为空,如果为空,则初始化为空列表 if ocr_bbox is None: ocr_bbox = [] if isinstance(image_source, str): image_source = Image.open(image_source) image_source = image_source.convert("RGB") # for CLIP w, h = image_source.size if not imgsz: imgsz = (h, w) # print('image size:', w, h) xyxy, logits, phrases = predict_yolo(model=model, image=image_source, box_threshold=BOX_TRESHOLD, imgsz=imgsz, scale_img=scale_img, iou_threshold=0.1) xyxy = xyxy / torch.Tensor([w, h, w, h]).to(xyxy.device) image_source = np.asarray(image_source) phrases = [str(i) for i in range(len(phrases))] # annotate the image with labels # 正确处理空列表和 None 值 if ocr_bbox is not None and len(ocr_bbox) > 0: # 修改后的条件判断 print("准备转换 ocr_bbox 类型") # 在类型转换之前 ocr_bbox = torch.tensor(ocr_bbox) / torch.Tensor([w, h, w, h]) print(f"转换 ocr_bbox 类型后:ocr_bbox = {ocr_bbox}") print("准备将 ocr_bbox 转换为列表") # 在转换为列表之前 ocr_bbox = ocr_bbox.tolist() print(f"将 ocr_bbox 转换为列表后:ocr_bbox = {ocr_bbox}") else: print('no ocr bbox!!!') ocr_bbox = [] # 赋值为空列表,而不是 None print(f"get_som_labeled_img AFTER OCR BBOX PROCESSING: ocr_bbox = {ocr_bbox}") # 2. Print after processing ocr_bbox print(f"get_som_labeled_img AFTER OCR BBOX PROCESSING: ocr_bbox = {ocr_bbox}") # 2. Print after processing ocr_bbox print("About to create ocr_bbox_elem") # 3. Before ocr_bbox_elem creation # 检查 ocr_bbox 和 ocr_text 是否都为空 if ocr_bbox and ocr_text: # 两个列表都不为空时才执行 ocr_bbox_elem = [{'type': 'text', 'bbox':box, 'interactivity':False, 'content':txt, 'source': 'box_ocr_content_ocr'} for box, txt in zip(ocr_bbox, ocr_text) if int_box_area(box, w, h) > 0] else: ocr_bbox_elem = [] # 赋予空列表 print(f"ocr_bbox_elem created: ocr_bbox = {ocr_bbox}") print(f"ocr_bbox_elem created: ocr_bbox = {ocr_bbox}") # 4. After ocr_bbox_elem creation print("About to create xyxy_elem") # 5. Before xyxy_elem creation xyxy_elem = [{'type': 'icon', 'bbox': box, 'interactivity': True, 'content': None} for box in xyxy.tolist() if int_box_area(box, w, h) > 0] print(f"xyxy_elem created: ocr_bbox = {ocr_bbox}") # 6. After xyxy_elem creation print("About to create filtered_boxes") # 7. Before filtered_boxes creation filtered_boxes = remove_overlap_new(boxes=xyxy_elem, iou_threshold=iou_threshold, ocr_bbox=ocr_bbox_elem) print(f"filtered_boxes created: ocr_bbox = {ocr_bbox}") # 8. After filtered_boxes creation print(f"ocr_text 类型:{type(ocr_text)}") print(f"ocr_text 内容:{ocr_text}") # 检查 ocr_bbox 和 ocr_text 是否都为空 if ocr_bbox and ocr_text: # 两个列表都不为空时才执行 ocr_bbox_elem = [{'type': 'text', 'bbox':box, 'interactivity':False, 'content':txt, 'source': 'box_ocr_content_ocr'} for box, txt in zip(ocr_bbox, ocr_text) if int_box_area(box, w, h) > 0] else: ocr_bbox_elem = [] # 赋予空列表 xyxy_elem = [{'type': 'icon', 'bbox':box, 'interactivity':True, 'content':None} for box in xyxy.tolist() if int_box_area(box, w, h) > 0] filtered_boxes = remove_overlap_new(boxes=xyxy_elem, iou_threshold=iou_threshold, ocr_bbox=ocr_bbox_elem) # sort the filtered_boxes so that the one with 'content': None is at the end, and get the index of the first 'content': None filtered_boxes_elem = sorted(filtered_boxes, key=lambda x: x['content'] is None) # get the index of the first 'content': None starting_idx = next((i for i, box in enumerate(filtered_boxes_elem) if box['content'] is None), -1) filtered_boxes = torch.tensor([box['bbox'] for box in filtered_boxes_elem]) print('len(filtered_boxes):', len(filtered_boxes), starting_idx) # get parsed icon local semantics time1 = time.time() caption_model = caption_model_processor['model'] if caption_model_processor else None if caption_model_processor is None: # 增加 caption_model_processor 的 None 值检查 print("警告: caption_model_processor 为 None,图像描述功能可能无法使用。") elif caption_model is not None: # 保留原有的 caption_model 的 None 值检查 if 'phi3_v' in caption_model.config.model_type: parsed_content_icon = get_parsed_content_icon_phi3v(filtered_boxes, ocr_bbox, image_source, caption_model_processor) else: print("Before get_parsed_content_icon call:") # 添加提示信息 print(f" filtered_boxes shape: {filtered_boxes.shape}") # 打印 filtered_boxes 的形状 print(f" image_source type: {type(image_source)}") # 打印 image_source 的类型 print(f" caption_model_processor: {caption_model_processor}") # 打印 caption_model_processor parsed_content_icon = get_parsed_content_icon(filtered_boxes, starting_idx, image_source, caption_model_processor, prompt=prompt,batch_size=batch_size) ocr_text = [f"Text Box ID {i}: {txt}" for i, txt in enumerate(ocr_text)] icon_start = len(ocr_text) parsed_content_icon_ls = [] # fill the filtered_boxes_elem None content with parsed_content_icon in order for i, box in enumerate(filtered_boxes_elem): if box['content'] is None: box['content'] = parsed_content_icon.pop(0) for i, txt in enumerate(parsed_content_icon): parsed_content_icon_ls.append(f"Icon Box ID {str(i+icon_start)}: {txt}") parsed_content_merged = ocr_text + parsed_content_icon_ls else: ocr_text = [f"Text Box ID {i}: {txt}" for i, txt in enumerate(ocr_text)] parsed_content_merged = ocr_text print('time to get parsed content:', time.time()-time1) filtered_boxes = box_convert(boxes=filtered_boxes, in_fmt="xyxy", out_fmt="cxcywh") phrases = [i for i in range(len(filtered_boxes))] # draw boxes if draw_bbox_config: annotated_frame, label_coordinates = annotate(image_source=image_source, boxes=filtered_boxes, logits=logits, phrases=phrases, **draw_bbox_config) else: annotated_frame, label_coordinates = annotate(image_source=image_source, boxes=filtered_boxes, logits=logits, phrases=phrases, text_scale=text_scale, text_padding=text_padding) pil_img = Image.fromarray(annotated_frame) buffered = io.BytesIO() pil_img.save(buffered, format="PNG") encoded_image = base64.b64encode(buffered.getvalue()).decode('ascii') if output_coord_in_ratio: label_coordinates = {k: [v[0]/w, v[1]/h, v[2]/w, v[3]/h] for k, v in label_coordinates.items()} assert w == annotated_frame.shape[1] and h == annotated_frame.shape[0] return encoded_image, label_coordinates, filtered_boxes_elem def get_xywh(input): x, y, w, h = input[0][0], input[0][1], input[2][0] - input[0][0], input[2][1] - input[0][1] x, y, w, h = int(x), int(y), int(w), int(h) return x, y, w, h def get_xyxy(input): x, y, xp, yp = input[0][0], input[0][1], input[2][0], input[2][1] x, y, xp, yp = int(x), int(y), int(xp), int(yp) return x, y, xp, yp def get_xywh_yolo(input): x, y, w, h = input[0], input[1], input[2] - input[0], input[3] - input[1] x, y, w, h = int(x), int(y), int(w), int(h) return x, y, w, h def check_ocr_box(image_source: Union[str, Image.Image], display_img = True, output_bb_format='xywh', goal_filtering=None, easyocr_args=None, use_paddleocr=False): if image_source is ...: # 检查 image_source 是否为 ... print("错误:image_source 是一个 ellipsis 对象!") return ([], []) # 或者其他适当的处理方式 if isinstance(image_source, str): image_source = Image.open(image_source) if isinstance(image_source, str): image_source = Image.open(image_source) if image_source.mode == 'RGBA': # Convert RGBA to RGB to avoid alpha channel issues image_source = image_source.convert('RGB') image_np = np.array(image_source) w, h = image_source.size if use_paddleocr: if easyocr_args is None: text_threshold = 0.5 else: text_threshold = easyocr_args['text_threshold'] result = paddle_ocr.ocr(image_np, cls=False)[0] coord = [item[0] for item in result if item[1][1] > text_threshold] text = [item[1][0] for item in result if item[1][1] > text_threshold] else: # EasyOCR if easyocr_args is None: easyocr_args = {} result = reader.readtext(image_np, **easyocr_args) coord = [item[0] for item in result] text = [item[1] for item in result] if display_img: opencv_img = cv2.cvtColor(image_np, cv2.COLOR_RGB2BGR) bb = [] for item in coord: x, y, a, b = get_xywh(item) bb.append((x, y, a, b)) cv2.rectangle(opencv_img, (x, y), (x+a, y+b), (0, 255, 0), 2) # matplotlib expects RGB plt.imshow(cv2.cvtColor(opencv_img, cv2.COLOR_BGR2RGB)) else: if output_bb_format == 'xywh': bb = [get_xywh(item) for item in coord] elif output_bb_format == 'xyxy': bb = [get_xyxy(item) for item in coord] return (text, bb), goal_filtering