Spaces:
Running
Running
File size: 30,581 Bytes
7d9eacb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 |
# from ultralytics import YOLO
import os
import io
import base64
import time
from PIL import Image, ImageDraw, ImageFont
import json
import requests
import ollama
# utility function
import os
from openai import AzureOpenAI
import json
import sys
import os
import cv2
import numpy as np
# %matplotlib inline
from matplotlib import pyplot as plt
import easyocr
from paddleocr import PaddleOCR
reader = easyocr.Reader(['en'])
paddle_ocr = PaddleOCR(
lang='en', # other lang also available
use_angle_cls=False,
use_gpu=False, # using cuda will conflict with pytorch in the same process
show_log=False,
max_batch_size=1024,
use_dilation=True, # improves accuracy
det_db_score_mode='slow', # improves accuracy
rec_batch_num=1024)
import time
import base64
import os
import ast
import torch
from typing import Tuple, List, Union
from torchvision.ops import box_convert
import re
from torchvision.transforms import ToPILImage
import supervision as sv
import torchvision.transforms as T
from util.box_annotator import BoxAnnotator
def get_caption_model_processor(model_name, model_name_or_path="Salesforce/blip2-opt-2.7b", device=None):
if not device:
device = "cuda" if torch.cuda.is_available() else "cpu"
if model_name == "blip2":
from transformers import Blip2Processor, Blip2ForConditionalGeneration
processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b")
if device == 'cpu':
model = Blip2ForConditionalGeneration.from_pretrained(
model_name_or_path, device_map=None, torch_dtype=torch.float32
)
else:
model = Blip2ForConditionalGeneration.from_pretrained(
model_name_or_path, device_map=None, torch_dtype=torch.float16
).to(device)
elif model_name == "florence":
from transformers import AutoProcessor, AutoModelForCausalLM
processor = AutoProcessor.from_pretrained("microsoft/Florence-base", trust_remote_code=True)
if device == 'cpu':
model = AutoModelForCausalLM.from_pretrained("microsoft/Florence-base", torch_dtype=torch.float32, trust_remote_code=True)
else:
model = AutoModelForCausalLM.from_pretrained("microsoft/Florence-base", torch_dtype=torch.float16, trust_remote_code=True).to(device)
elif model_name == "ollama":
return {"model": None, "processor": None}
elif model_name == "florence2":
from transformers import AutoProcessor, AutoModelForCausalLM
processor = AutoProcessor.from_pretrained("microsoft/Florence-2-base", trust_remote_code=True)
if device == 'cpu':
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, torch_dtype=torch.float32, trust_remote_code=True)
else:
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, torch_dtype=torch.float16, trust_remote_code=True).to(device)
return {'model': model.to(device), 'processor': processor}
def get_yolo_model(model_path):
from ultralytics import YOLO
# Load the model.
model = YOLO(model_path)
return model
@torch.inference_mode()
def get_parsed_content_icon(filtered_boxes, starting_idx, image_source, caption_model_processor, prompt=None, batch_size=128):
parsed_content_icon = []
# Number of samples per batch, --> 128 roughly takes 4 GB of GPU memory for florence v2 model
to_pil = ToPILImage()
if starting_idx:
non_ocr_boxes = filtered_boxes[starting_idx:]
else:
non_ocr_boxes = filtered_boxes
croped_pil_image = []
for i, coord in enumerate(non_ocr_boxes):
try:
xmin, xmax = int(coord[0]*image_source.shape[1]), int(coord[2]*image_source.shape[1])
ymin, ymax = int(coord[1]*image_source.shape[0]), int(coord[3]*image_source.shape[0])
cropped_image = image_source[ymin:ymax, xmin:xmax, :]
cropped_image = cv2.resize(cropped_image, (64, 64))
croped_pil_image.append(to_pil(cropped_image))
except:
continue
model, processor = caption_model_processor['model'], caption_model_processor['processor']
if not prompt:
if 'florence' in model.config.name_or_path:
prompt = "<CAPTION>"
else:
prompt = "The image shows"
generated_texts = []
device = model.device
for i in range(0, len(croped_pil_image), batch_size):
start = time.time()
batch = croped_pil_image[i:i+batch_size]
t1 = time.time()
if model.device.type == 'cuda':
inputs = processor(images=batch, text=[prompt]*len(batch), return_tensors="pt", do_resize=False).to(device=device, dtype=torch.float16)
else:
inputs = processor(images=batch, text=[prompt]*len(batch), return_tensors="pt").to(device=device)
# 显式生成 input_ids
text_inputs = processor.tokenizer([prompt]*len(batch), return_tensors="pt", padding=True)
inputs['input_ids'] = text_inputs['input_ids'].to(device)
if 'attention_mask' not in inputs:
inputs['attention_mask'] = text_inputs['attention_mask'].to(device)
# 尝试添加 decoder_input_ids
bos_token_id = processor.tokenizer.bos_token_id # 获取 BOS token ID
if bos_token_id is None: # 如果 BOS token ID 为 None,则使用 EOS token ID 作为 fallback
bos_token_id = processor.tokenizer.eos_token_id
decoder_input_ids = torch.tensor([[bos_token_id] * len(batch)]).T.to(device) # 创建 decoder_input_ids,形状为 (batch_size, 1)
inputs['decoder_input_ids'] = decoder_input_ids # 将 decoder_input_ids 添加到 inputs 字典
print("Before model.generate call:")
print(f" Input attention_mask shape: {inputs['attention_mask'].shape if 'attention_mask' in inputs else 'No attention_mask in inputs'}")
print(f" Input pixel_values shape: {inputs['pixel_values'].shape if 'pixel_values' in inputs else 'No pixel_values in inputs'}")
print(f" Input input_ids shape: {inputs['input_ids'].shape if 'input_ids' in inputs else 'No input_ids in inputs'}")
print(f" Full inputs dictionary: {inputs}")
print(f" Inputs dictionary keys: {inputs.keys()}") # 打印 inputs 字典的键
if 'florence' in model.config.name_or_path:
generated_ids = model.generate(**inputs, max_length=100, num_beams=5, no_repeat_ngram_size=2, early_stopping=True, num_return_sequences=1) # temperature=0.01, do_sample=True,
elif 'blip2' in model.config.name_or_path:
generated_ids = model.generate(**inputs, max_new_tokens=20)
elif 'phi3_v' in model.config.model_type:
generated_ids = model.generate(**inputs, max_new_tokens=50)
else: # clip-tag and mocov3
generated_ids = model(**inputs)
print("After model.generate call:") # 添加提示信息
if isinstance(generated_ids, tuple): # 处理不同模型输出
generated_ids = generated_ids[0] # 假设第一个元素是 generated_ids
print(f" Generated IDs object: {generated_ids}") # 打印 generated_ids 对象
print(f" Generated IDs shape: {generated_ids.sequences.shape}") # 修改为访问 sequences 属性
generated_ids_for_decode = generated_ids.sequences # 获取 sequences 属性用于解码
generated_texts_batch = processor.batch_decode(generated_ids_for_decode, skip_special_tokens=True) # 使用 sequences 属性进行解码
generated_texts.extend(generated_texts_batch)
end = time.time()
print(f"batch {i//batch_size} takes {end-start:.2f} seconds, infer time {end-t1:.2f} seconds, batch size {len(batch)}, generated text: {generated_texts_batch}")
parsed_content_icon = generated_texts # 先进行赋值
return parsed_content_icon # 然后返回 parsed_content_icon
def get_parsed_content_icon_phi3v(filtered_boxes, ocr_bbox, image_source, caption_model_processor):
to_pil = ToPILImage()
if ocr_bbox:
non_ocr_boxes = filtered_boxes[len(ocr_bbox):]
else:
non_ocr_boxes = filtered_boxes
croped_pil_image = []
for i, coord in enumerate(non_ocr_boxes):
xmin, xmax = int(coord[0]*image_source.shape[1]), int(coord[2]*image_source.shape[1])
ymin, ymax = int(coord[1]*image_source.shape[0]), int(coord[3]*image_source.shape[0])
cropped_image = image_source[ymin:ymax, xmin:xmax, :]
croped_pil_image.append(to_pil(cropped_image))
model, processor = caption_model_processor['model'], caption_model_processor['processor']
device = model.device
messages = [{"role": "user", "content": "<|image_1|>\ndescribe the icon in one sentence"}]
prompt = processor.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
batch_size = 5 # Number of samples per batch
generated_texts = []
for i in range(0, len(croped_pil_image), batch_size):
images = croped_pil_image[i:i+batch_size]
image_inputs = [processor.image_processor(x, return_tensors="pt") for x in images]
inputs ={'input_ids': [], 'attention_mask': [], 'pixel_values': [], 'image_sizes': []}
texts = [prompt] * len(images)
for i, txt in enumerate(texts):
input = processor._convert_images_texts_to_inputs(image_inputs[i], txt, return_tensors="pt")
inputs['input_ids'].append(input['input_ids'])
inputs['attention_mask'].append(input['attention_mask'])
inputs['pixel_values'].append(input['pixel_values'])
inputs['image_sizes'].append(input['image_sizes'])
max_len = max([x.shape[1] for x in inputs['input_ids']])
for i, v in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = torch.cat([processor.tokenizer.pad_token_id * torch.ones(1, max_len - v.shape[1], dtype=torch.long), v], dim=1)
inputs['attention_mask'][i] = torch.cat([torch.zeros(1, max_len - v.shape[1], dtype=torch.long), inputs['attention_mask'][i]], dim=1)
inputs_cat = {k: torch.concatenate(v).to(device) for k, v in inputs.items()}
generation_args = {
"max_new_tokens": 25,
"temperature": 0.01,
"do_sample": False,
}
generate_ids = model.generate(**inputs_cat, eos_token_id=processor.tokenizer.eos_token_id, **generation_args)
# # remove input tokens
generate_ids = generate_ids[:, inputs_cat['input_ids'].shape[1]:]
response = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)
response = [res.strip('\n').strip() for res in response]
generated_texts.extend(response)
return generated_texts
def remove_overlap(boxes, iou_threshold, ocr_bbox=None):
assert ocr_bbox is None or isinstance(ocr_bbox, List)
def box_area(box):
return (box[2] - box[0]) * (box[3] - box[1])
def intersection_area(box1, box2):
x1 = max(box1[0], box2[0])
y1 = max(box1[1], box2[1])
x2 = min(box1[2], box2[2])
y2 = min(box1[3], box2[3])
return max(0, x2 - x1) * max(0, y2 - y1)
def IoU(box1, box2):
intersection = intersection_area(box1, box2)
union = box_area(box1) + box_area(box2) - intersection + 1e-6
if box_area(box1) > 0 and box_area(box2) > 0:
ratio1 = intersection / box_area(box1)
ratio2 = intersection / box_area(box2)
else:
ratio1, ratio2 = 0, 0
return max(intersection / union, ratio1, ratio2)
def is_inside(box1, box2):
# return box1[0] >= box2[0] and box1[1] >= box2[1] and box1[2] <= box2[2] and box1[3] <= box2[3]
intersection = intersection_area(box1, box2)
ratio1 = intersection / box_area(box1)
return ratio1 > 0.95
boxes = boxes.tolist()
filtered_boxes = []
if ocr_bbox:
filtered_boxes.extend(ocr_bbox)
# print('ocr_bbox!!!', ocr_bbox)
for i, box1 in enumerate(boxes):
# if not any(IoU(box1, box2) > iou_threshold and box_area(box1) > box_area(box2) for j, box2 in enumerate(boxes) if i != j):
is_valid_box = True
for j, box2 in enumerate(boxes):
# keep the smaller box
if i != j and IoU(box1, box2) > iou_threshold and box_area(box1) > box_area(box2):
is_valid_box = False
break
if is_valid_box:
# add the following 2 lines to include ocr bbox
if ocr_bbox:
# only add the box if it does not overlap with any ocr bbox
if not any(IoU(box1, box3) > iou_threshold and not is_inside(box1, box3) for k, box3 in enumerate(ocr_bbox)):
filtered_boxes.append(box1)
else:
filtered_boxes.append(box1)
return torch.tensor(filtered_boxes)
def remove_overlap_new(boxes, iou_threshold, ocr_bbox=None):
if not ocr_bbox:
return boxes
def box_area(box):
return (box[2] - box[0]) * (box[3] - box[1])
def intersection_area(box1, box2):
x1 = max(box1[0], box2[0])
y1 = max(box1[1], box2[1])
x2 = min(box1[2], box2[2])
y2 = min(box1[3], box2[3])
return max(0, x2 - x1) * max(0, y2 - y1)
def IoU(box1, box2):
intersection = intersection_area(box1, box2)
union = box_area(box1) + box_area(box2) - intersection + 1e-6
if box_area(box1) > 0 and box_area(box2) > 0:
ratio1 = intersection / box_area(box1)
ratio2 = intersection / box_area(box2)
else:
ratio1, ratio2 = 0, 0
return max(intersection / union, ratio1, ratio2)
def is_inside(box1, box2):
intersection = intersection_area(box1, box2)
ratio1 = intersection / box_area(box1)
return ratio1 > 0.80 # 可调整阈值
filtered_boxes = []
if ocr_bbox:
filtered_boxes.extend(ocr_bbox)
for i, box1_elem in enumerate(boxes):
box1 = box1_elem['bbox']
is_valid_box = True
for j, box2_elem in enumerate(boxes):
box2 = box2_elem['bbox']
if i != j and IoU(box1, box2) > iou_threshold and box_area(box1) > box_area(box2):
is_valid_box = False
break
if is_valid_box:
if ocr_bbox:
box_added = False
ocr_labels = ''
indices_to_remove = [] # 存储需要移除的 ocr_bbox 元素的索引
for k, box3_elem in enumerate(ocr_bbox):
if not box_added:
box3 = box3_elem['bbox']
if is_inside(box3, box1):
try:
ocr_labels += box3_elem['content'] + ' '
indices_to_remove.append(k) # 记录索引
except:
continue
elif is_inside(box1, box3):
box_added = True
break
else:
continue
# 逆序移除元素,避免索引错位
for index in sorted(indices_to_remove, reverse=True):
filtered_boxes.pop(index)
if not box_added:
if ocr_labels:
filtered_boxes.append({'type': 'icon', 'bbox': box1_elem['bbox'], 'interactivity': True, 'content': ocr_labels, 'source':'box_yolo_content_ocr'})
else:
filtered_boxes.append({'type': 'icon', 'bbox': box1_elem['bbox'], 'interactivity': True, 'content': None, 'source':'box_yolo_content_yolo'})
else:
filtered_boxes.append(box1_elem) # 修改:添加box1_elem而不是box1
return filtered_boxes
def load_image(image_path: str) -> Tuple[np.array, torch.Tensor]:
transform = T.Compose(
[
T.RandomResize([800], max_size=1333),
T.ToTensor(),
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
)
image_source = Image.open(image_path).convert("RGB")
image = np.asarray(image_source)
image_transformed, _ = transform(image_source, None)
return image, image_transformed
def annotate(image_source: np.ndarray, boxes: torch.Tensor, logits: torch.Tensor, phrases: List[str], text_scale: float,
text_padding=5, text_thickness=2, thickness=3) -> np.ndarray:
"""
This function annotates an image with bounding boxes and labels.
Parameters:
image_source (np.ndarray): The source image to be annotated.
boxes (torch.Tensor): A tensor containing bounding box coordinates. in cxcywh format, pixel scale
logits (torch.Tensor): A tensor containing confidence scores for each bounding box.
phrases (List[str]): A list of labels for each bounding box.
text_scale (float): The scale of the text to be displayed. 0.8 for mobile/web, 0.3 for desktop # 0.4 for mind2web
Returns:
np.ndarray: The annotated image.
"""
h, w, _ = image_source.shape
boxes = boxes * torch.Tensor([w, h, w, h])
xyxy = box_convert(boxes=boxes, in_fmt="cxcywh", out_fmt="xyxy").numpy()
xywh = box_convert(boxes=boxes, in_fmt="cxcywh", out_fmt="xywh").numpy()
detections = sv.Detections(xyxy=xyxy)
labels = [f"{phrase}" for phrase in range(boxes.shape[0])]
box_annotator = BoxAnnotator(text_scale=text_scale, text_padding=text_padding,text_thickness=text_thickness,thickness=thickness) # 0.8 for mobile/web, 0.3 for desktop # 0.4 for mind2web
annotated_frame = image_source.copy()
annotated_frame = box_annotator.annotate(scene=annotated_frame, detections=detections, labels=labels, image_size=(w,h))
label_coordinates = {f"{phrase}": v for phrase, v in zip(phrases, xywh)}
return annotated_frame, label_coordinates
def predict(model, image, caption, box_threshold, text_threshold):
""" Use huggingface model to replace the original model
"""
model, processor = model['model'], model['processor']
device = model.device
inputs = processor(images=image, text=caption, return_tensors="pt").to(device)
with torch.no_grad():
outputs = model(**inputs)
results = processor.post_process_grounded_object_detection(
outputs,
inputs.input_ids,
box_threshold=box_threshold, # 0.4,
text_threshold=text_threshold, # 0.3,
target_sizes=[image.size[::-1]]
)[0]
boxes, logits, phrases = results["boxes"], results["scores"], results["labels"]
return boxes, logits, phrases
def predict_yolo(model, image, box_threshold, imgsz, scale_img, iou_threshold=0.7):
""" Use huggingface model to replace the original model
"""
# model = model['model']
if scale_img:
result = model.predict(
source=image,
conf=box_threshold,
imgsz=imgsz,
iou=iou_threshold, # default 0.7
)
else:
result = model.predict(
source=image,
conf=box_threshold,
iou=iou_threshold, # default 0.7
)
boxes = result[0].boxes.xyxy#.tolist() # in pixel space
conf = result[0].boxes.conf
phrases = [str(i) for i in range(len(boxes))]
return boxes, conf, phrases
def int_box_area(box, w, h):
x1, y1, x2, y2 = box
int_box = [int(x1*w), int(y1*h), int(x2*w), int(y2*h)]
area = (int_box[2] - int_box[0]) * (int_box[3] - int_box[1])
return area
def get_som_labeled_img(image_source: Union[str, Image.Image], model=None, BOX_TRESHOLD=0.01, output_coord_in_ratio=False, ocr_bbox=None, text_scale=0.4, text_padding=5, draw_bbox_config=None, caption_model_processor=None, ocr_text=[], use_local_semantics=True, iou_threshold=0.9,prompt=None, scale_img=False, imgsz=None, batch_size=128):
"""Process either an image path or Image object
Args:
image_source: Either a file path (str) or PIL Image object
...
"""
print(f"get_som_labeled_img 开始:ocr_bbox = {ocr_bbox}")
print(f"ocr_text 类型:{type(ocr_text)}")
print(f"ocr_text 内容:{ocr_text}")
(ocr_text, ocr_bbox) = check_ocr_box(image_source, display_img=False, output_bb_format='xywh', goal_filtering=None, easyocr_args=None, use_paddleocr=False)
# 检查 ocr_bbox 是否为空,如果为空,则初始化为空列表
if ocr_bbox is None:
ocr_bbox = []
if isinstance(image_source, str):
image_source = Image.open(image_source)
image_source = image_source.convert("RGB") # for CLIP
w, h = image_source.size
if not imgsz:
imgsz = (h, w)
# print('image size:', w, h)
xyxy, logits, phrases = predict_yolo(model=model, image=image_source, box_threshold=BOX_TRESHOLD, imgsz=imgsz, scale_img=scale_img, iou_threshold=0.1)
xyxy = xyxy / torch.Tensor([w, h, w, h]).to(xyxy.device)
image_source = np.asarray(image_source)
phrases = [str(i) for i in range(len(phrases))]
# annotate the image with labels
# 正确处理空列表和 None 值
if ocr_bbox is not None and len(ocr_bbox) > 0: # 修改后的条件判断
print("准备转换 ocr_bbox 类型") # 在类型转换之前
ocr_bbox = torch.tensor(ocr_bbox) / torch.Tensor([w, h, w, h])
print(f"转换 ocr_bbox 类型后:ocr_bbox = {ocr_bbox}")
print("准备将 ocr_bbox 转换为列表") # 在转换为列表之前
ocr_bbox = ocr_bbox.tolist()
print(f"将 ocr_bbox 转换为列表后:ocr_bbox = {ocr_bbox}")
else:
print('no ocr bbox!!!')
ocr_bbox = [] # 赋值为空列表,而不是 None
print(f"get_som_labeled_img AFTER OCR BBOX PROCESSING: ocr_bbox = {ocr_bbox}") # 2. Print after processing ocr_bbox
print(f"get_som_labeled_img AFTER OCR BBOX PROCESSING: ocr_bbox = {ocr_bbox}") # 2. Print after processing ocr_bbox
print("About to create ocr_bbox_elem") # 3. Before ocr_bbox_elem creation
# 检查 ocr_bbox 和 ocr_text 是否都为空
if ocr_bbox and ocr_text: # 两个列表都不为空时才执行
ocr_bbox_elem = [{'type': 'text', 'bbox':box, 'interactivity':False, 'content':txt, 'source': 'box_ocr_content_ocr'} for box, txt in zip(ocr_bbox, ocr_text) if int_box_area(box, w, h) > 0]
else:
ocr_bbox_elem = [] # 赋予空列表
print(f"ocr_bbox_elem created: ocr_bbox = {ocr_bbox}")
print(f"ocr_bbox_elem created: ocr_bbox = {ocr_bbox}") # 4. After ocr_bbox_elem creation
print("About to create xyxy_elem") # 5. Before xyxy_elem creation
xyxy_elem = [{'type': 'icon', 'bbox': box, 'interactivity': True, 'content': None} for box in xyxy.tolist() if int_box_area(box, w, h) > 0]
print(f"xyxy_elem created: ocr_bbox = {ocr_bbox}") # 6. After xyxy_elem creation
print("About to create filtered_boxes") # 7. Before filtered_boxes creation
filtered_boxes = remove_overlap_new(boxes=xyxy_elem, iou_threshold=iou_threshold, ocr_bbox=ocr_bbox_elem)
print(f"filtered_boxes created: ocr_bbox = {ocr_bbox}") # 8. After filtered_boxes creation
print(f"ocr_text 类型:{type(ocr_text)}")
print(f"ocr_text 内容:{ocr_text}")
# 检查 ocr_bbox 和 ocr_text 是否都为空
if ocr_bbox and ocr_text: # 两个列表都不为空时才执行
ocr_bbox_elem = [{'type': 'text', 'bbox':box, 'interactivity':False, 'content':txt, 'source': 'box_ocr_content_ocr'} for box, txt in zip(ocr_bbox, ocr_text) if int_box_area(box, w, h) > 0]
else:
ocr_bbox_elem = [] # 赋予空列表
xyxy_elem = [{'type': 'icon', 'bbox':box, 'interactivity':True, 'content':None} for box in xyxy.tolist() if int_box_area(box, w, h) > 0]
filtered_boxes = remove_overlap_new(boxes=xyxy_elem, iou_threshold=iou_threshold, ocr_bbox=ocr_bbox_elem)
# sort the filtered_boxes so that the one with 'content': None is at the end, and get the index of the first 'content': None
filtered_boxes_elem = sorted(filtered_boxes, key=lambda x: x['content'] is None)
# get the index of the first 'content': None
starting_idx = next((i for i, box in enumerate(filtered_boxes_elem) if box['content'] is None), -1)
filtered_boxes = torch.tensor([box['bbox'] for box in filtered_boxes_elem])
print('len(filtered_boxes):', len(filtered_boxes), starting_idx)
# get parsed icon local semantics
time1 = time.time()
caption_model = caption_model_processor['model'] if caption_model_processor else None
if caption_model_processor is None: # 增加 caption_model_processor 的 None 值检查
print("警告: caption_model_processor 为 None,图像描述功能可能无法使用。")
elif caption_model is not None: # 保留原有的 caption_model 的 None 值检查
if 'phi3_v' in caption_model.config.model_type:
parsed_content_icon = get_parsed_content_icon_phi3v(filtered_boxes, ocr_bbox, image_source, caption_model_processor)
else:
print("Before get_parsed_content_icon call:") # 添加提示信息
print(f" filtered_boxes shape: {filtered_boxes.shape}") # 打印 filtered_boxes 的形状
print(f" image_source type: {type(image_source)}") # 打印 image_source 的类型
print(f" caption_model_processor: {caption_model_processor}") # 打印 caption_model_processor
parsed_content_icon = get_parsed_content_icon(filtered_boxes, starting_idx, image_source, caption_model_processor, prompt=prompt,batch_size=batch_size)
ocr_text = [f"Text Box ID {i}: {txt}" for i, txt in enumerate(ocr_text)]
icon_start = len(ocr_text)
parsed_content_icon_ls = []
# fill the filtered_boxes_elem None content with parsed_content_icon in order
for i, box in enumerate(filtered_boxes_elem):
if box['content'] is None:
box['content'] = parsed_content_icon.pop(0)
for i, txt in enumerate(parsed_content_icon):
parsed_content_icon_ls.append(f"Icon Box ID {str(i+icon_start)}: {txt}")
parsed_content_merged = ocr_text + parsed_content_icon_ls
else:
ocr_text = [f"Text Box ID {i}: {txt}" for i, txt in enumerate(ocr_text)]
parsed_content_merged = ocr_text
print('time to get parsed content:', time.time()-time1)
filtered_boxes = box_convert(boxes=filtered_boxes, in_fmt="xyxy", out_fmt="cxcywh")
phrases = [i for i in range(len(filtered_boxes))]
# draw boxes
if draw_bbox_config:
annotated_frame, label_coordinates = annotate(image_source=image_source, boxes=filtered_boxes, logits=logits, phrases=phrases, **draw_bbox_config)
else:
annotated_frame, label_coordinates = annotate(image_source=image_source, boxes=filtered_boxes, logits=logits, phrases=phrases, text_scale=text_scale, text_padding=text_padding)
pil_img = Image.fromarray(annotated_frame)
buffered = io.BytesIO()
pil_img.save(buffered, format="PNG")
encoded_image = base64.b64encode(buffered.getvalue()).decode('ascii')
if output_coord_in_ratio:
label_coordinates = {k: [v[0]/w, v[1]/h, v[2]/w, v[3]/h] for k, v in label_coordinates.items()}
assert w == annotated_frame.shape[1] and h == annotated_frame.shape[0]
return encoded_image, label_coordinates, filtered_boxes_elem
def get_xywh(input):
x, y, w, h = input[0][0], input[0][1], input[2][0] - input[0][0], input[2][1] - input[0][1]
x, y, w, h = int(x), int(y), int(w), int(h)
return x, y, w, h
def get_xyxy(input):
x, y, xp, yp = input[0][0], input[0][1], input[2][0], input[2][1]
x, y, xp, yp = int(x), int(y), int(xp), int(yp)
return x, y, xp, yp
def get_xywh_yolo(input):
x, y, w, h = input[0], input[1], input[2] - input[0], input[3] - input[1]
x, y, w, h = int(x), int(y), int(w), int(h)
return x, y, w, h
def check_ocr_box(image_source: Union[str, Image.Image], display_img = True, output_bb_format='xywh', goal_filtering=None, easyocr_args=None, use_paddleocr=False):
if image_source is ...: # 检查 image_source 是否为 ...
print("错误:image_source 是一个 ellipsis 对象!")
return ([], []) # 或者其他适当的处理方式
if isinstance(image_source, str):
image_source = Image.open(image_source)
if isinstance(image_source, str):
image_source = Image.open(image_source)
if image_source.mode == 'RGBA':
# Convert RGBA to RGB to avoid alpha channel issues
image_source = image_source.convert('RGB')
image_np = np.array(image_source)
w, h = image_source.size
if use_paddleocr:
if easyocr_args is None:
text_threshold = 0.5
else:
text_threshold = easyocr_args['text_threshold']
result = paddle_ocr.ocr(image_np, cls=False)[0]
coord = [item[0] for item in result if item[1][1] > text_threshold]
text = [item[1][0] for item in result if item[1][1] > text_threshold]
else: # EasyOCR
if easyocr_args is None:
easyocr_args = {}
result = reader.readtext(image_np, **easyocr_args)
coord = [item[0] for item in result]
text = [item[1] for item in result]
if display_img:
opencv_img = cv2.cvtColor(image_np, cv2.COLOR_RGB2BGR)
bb = []
for item in coord:
x, y, a, b = get_xywh(item)
bb.append((x, y, a, b))
cv2.rectangle(opencv_img, (x, y), (x+a, y+b), (0, 255, 0), 2)
# matplotlib expects RGB
plt.imshow(cv2.cvtColor(opencv_img, cv2.COLOR_BGR2RGB))
else:
if output_bb_format == 'xywh':
bb = [get_xywh(item) for item in coord]
elif output_bb_format == 'xyxy':
bb = [get_xyxy(item) for item in coord]
return (text, bb), goal_filtering |