File size: 7,218 Bytes
6935ada
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62617a0
 
6935ada
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66d91ff
6935ada
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62617a0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
# Copyright (2023) Tsinghua University, Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gradio as gr
import spaces

import argparse
from model_zero import SALMONN

class ff:
    def generate(self, wav_path, prompt, prompt_pattern, num_beams, temperature, top_p):
        print(f'wav_path: {wav_path}, prompt: {prompt}, temperature: {temperature}, num_beams: {num_beams}, top_p: {top_p}')
        return "I'm sorry, but I cannot answer that question as it is not clear what you are asking. Can you please provide more context or clarify your question?"

parser = argparse.ArgumentParser()
parser.add_argument("--device", type=str, default="cuda:0")
parser.add_argument("--ckpt_path", type=str, default="./salmonn_7b_v0.pth")
parser.add_argument("--whisper_path", type=str, default="./whisper_large_v2")
parser.add_argument("--beats_path", type=str, default="./beats/BEATs_iter3_plus_AS2M_finetuned_on_AS2M_cpt2.pt")
parser.add_argument("--vicuna_path", type=str, default="./vicuna-7b-v1.5")
parser.add_argument("--low_resource", action='store_true', default=False)
parser.add_argument("--port", default=9527)

args = parser.parse_args()
args.low_resource = True # for huggingface A10 7b demo
# model = ff()
model = SALMONN(
    ckpt=args.ckpt_path,
    whisper_path=args.whisper_path,
    beats_path=args.beats_path,
    vicuna_path=args.vicuna_path,
    low_resource=args.low_resource,
    lora_alpha=28,
    device='cpu'
)
model.to(args.device)
model.eval()

@spaces.GPU(enable_queue=True)
def gradio_answer(speech, text_input, num_beams, temperature, top_p):
    
    llm_message = model.generate(
        wav_path=speech,
        prompt=text_input,
        num_beams=num_beams,
        temperature=temperature,
        top_p=top_p,
    )

    print(llm_message)
    
    return llm_message[0]

title = """<h1 style="text-align: center;">SALMONN: Speech Audio Language Music Open Neural Network</h1>"""
image_src = """<h1 align="center"><a href="https://github.com/bytedance/SALMONN"><img src="https://raw.githubusercontent.com/bytedance/SALMONN/main/resource/salmon.png", alt="SALMONN" border="0" style="margin: 0 auto; height: 200px;" /></a> </h1>"""
description = """<h3 style="text-align: center;">This is a simplified gradio demo for <a href="https://huggingface.co/tsinghua-ee/SALMONN-7B" target="_blank">SALMONN-7B</a>. <br />To experience SALMONN-13B, you can go to <a href="https://bytedance.github.io/SALMONN">https://bytedance.github.io/SALMONN</a>.<br /> Upload your audio and ask a question!</h3>"""

css = """
div#col-container {
    margin: 0 auto;
    max-width: 840px;
}
"""

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.HTML(title)
        #gr.Markdown(image_src)
        gr.HTML(description)
    
        with gr.Row():
            with gr.Column():
                speech = gr.Audio(label="Audio", type='filepath')
                
                with gr.Row():
                    text_input = gr.Textbox(label='User question', placeholder='Please upload your audio first', interactive=True)
                    submit_btn = gr.Button("Submit", scale=0)
                answer = gr.Textbox(label="Salmonn answer")
    
                with gr.Accordion("Advanced Settings", open=False):
                    num_beams = gr.Slider(
                        minimum=1,
                        maximum=10,
                        value=4,
                        step=1,
                        interactive=True,
                        label="beam search numbers",
                    )
        
                    top_p = gr.Slider(
                        minimum=0.1,
                        maximum=1.0,
                        value=0.9,
                        step=0.1,
                        interactive=True,
                        label="top p",
                    )
        
                    temperature = gr.Slider(
                        minimum=0.8,
                        maximum=2.0,
                        value=1.0,
                        step=0.1,
                        interactive=False,
                        label="temperature",
                    )
                

        with gr.Row():
            examples = gr.Examples(
                examples = [
                    ["resource/audio_demo/gunshots.wav", "Recognize the speech and give me the transcription."],
                    ["resource/audio_demo/gunshots.wav", "Listen to the speech and translate it into German."],
                    ["resource/audio_demo/gunshots.wav", "Provide the phonetic transcription for the speech."],
                    ["resource/audio_demo/gunshots.wav", "Please describe the audio."],
                    ["resource/audio_demo/gunshots.wav", "Recognize what the speaker says and describe the background audio at the same time."],
                    ["resource/audio_demo/gunshots.wav", "Use your strong reasoning skills to answer the speaker's question in detail based on the background sound."],
                    ["resource/audio_demo/duck.wav", "Please list each event in the audio in order."],
                    ["resource/audio_demo/duck.wav", "Based on the audio, write a story in detail. Your story should be highly related to the audio."],
                    ["resource/audio_demo/duck.wav", "How many speakers did you hear in this audio? Who are they?"],
                    ["resource/audio_demo/excitement.wav", "Describe the emotion of the speaker."],
                    ["resource/audio_demo/mountain.wav", "Please answer the question in detail."],
                    ["resource/audio_demo/jobs.wav", "Give me only three keywords of the text. Explain your reason."],
                    ["resource/audio_demo/2_30.wav", "What is the time mentioned in the speech?"],
                    ["resource/audio_demo/music.wav", "Please describe the music in detail."],
                    ["resource/audio_demo/music.wav", "What is the emotion of the music? Explain the reason in detail."],
                    ["resource/audio_demo/music.wav", "Can you write some lyrics of the song?"],
                    ["resource/audio_demo/music.wav", "Give me a title of the music based on its rhythm and emotion."]
                ],
                inputs=[speech, text_input]
            )
        
    
    text_input.submit(
        gradio_answer, [speech, text_input, num_beams, temperature, top_p], [answer]
    )
    submit_btn.click(
        gradio_answer, [speech, text_input, num_beams, temperature, top_p], [answer]
    )
    

# demo.launch(share=True, enable_queue=True, server_port=int(args.port))
demo.queue(max_size=20).launch(share=False, show_error=True)