Spaces:
Build error
Build error
fullstuckdev
commited on
Commit
·
93374aa
1
Parent(s):
f6b6cd4
fixing training
Browse files
app.py
CHANGED
|
@@ -6,6 +6,9 @@ import torch
|
|
| 6 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 7 |
import logging
|
| 8 |
from typing import List, Optional
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
# Setup logging
|
| 11 |
logging.basicConfig(level=logging.INFO)
|
|
@@ -31,6 +34,26 @@ class HealthResponse(BaseModel):
|
|
| 31 |
gpu_available: bool
|
| 32 |
device: str
|
| 33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
# Initialize FastAPI app
|
| 35 |
app = FastAPI(
|
| 36 |
title="Medical LLaMA API",
|
|
@@ -133,4 +156,166 @@ async def startup_event():
|
|
| 133 |
tokenizer, model = init_model()
|
| 134 |
logger.info("Model loaded successfully")
|
| 135 |
except Exception as e:
|
| 136 |
-
logger.error(f"Failed to load model: {str(e)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 7 |
import logging
|
| 8 |
from typing import List, Optional
|
| 9 |
+
from datasets import load_dataset
|
| 10 |
+
from transformers import TrainingArguments, Trainer, DataCollatorForLanguageModeling
|
| 11 |
+
import json
|
| 12 |
|
| 13 |
# Setup logging
|
| 14 |
logging.basicConfig(level=logging.INFO)
|
|
|
|
| 34 |
gpu_available: bool
|
| 35 |
device: str
|
| 36 |
|
| 37 |
+
class TrainRequest(BaseModel):
|
| 38 |
+
dataset_path: str
|
| 39 |
+
num_epochs: Optional[int] = 3
|
| 40 |
+
batch_size: Optional[int] = 4
|
| 41 |
+
learning_rate: Optional[float] = 2e-5
|
| 42 |
+
|
| 43 |
+
class TrainResponse(BaseModel):
|
| 44 |
+
status: str
|
| 45 |
+
message: str
|
| 46 |
+
|
| 47 |
+
# Add training status tracking
|
| 48 |
+
class TrainingStatus:
|
| 49 |
+
def __init__(self):
|
| 50 |
+
self.is_training = False
|
| 51 |
+
self.current_epoch = 0
|
| 52 |
+
self.current_loss = None
|
| 53 |
+
self.status = "idle"
|
| 54 |
+
|
| 55 |
+
training_status = TrainingStatus()
|
| 56 |
+
|
| 57 |
# Initialize FastAPI app
|
| 58 |
app = FastAPI(
|
| 59 |
title="Medical LLaMA API",
|
|
|
|
| 156 |
tokenizer, model = init_model()
|
| 157 |
logger.info("Model loaded successfully")
|
| 158 |
except Exception as e:
|
| 159 |
+
logger.error(f"Failed to load model: {str(e)}")
|
| 160 |
+
|
| 161 |
+
@app.post("/train", response_model=TrainResponse, tags=["Training"])
|
| 162 |
+
async def train_model(request: TrainRequest, background_tasks: BackgroundTasks):
|
| 163 |
+
"""
|
| 164 |
+
Start model training with the specified dataset
|
| 165 |
+
|
| 166 |
+
Parameters:
|
| 167 |
+
- dataset_path: Path to the JSON dataset file
|
| 168 |
+
- num_epochs: Number of training epochs
|
| 169 |
+
- batch_size: Training batch size
|
| 170 |
+
- learning_rate: Learning rate for training
|
| 171 |
+
"""
|
| 172 |
+
if training_status.is_training:
|
| 173 |
+
raise HTTPException(status_code=400, detail="Training is already in progress")
|
| 174 |
+
|
| 175 |
+
try:
|
| 176 |
+
# Verify dataset exists
|
| 177 |
+
if not os.path.exists(request.dataset_path):
|
| 178 |
+
raise HTTPException(status_code=404, detail="Dataset file not found")
|
| 179 |
+
|
| 180 |
+
# Start training in background
|
| 181 |
+
background_tasks.add_task(
|
| 182 |
+
run_training,
|
| 183 |
+
request.dataset_path,
|
| 184 |
+
request.num_epochs,
|
| 185 |
+
request.batch_size,
|
| 186 |
+
request.learning_rate
|
| 187 |
+
)
|
| 188 |
+
|
| 189 |
+
return TrainResponse(
|
| 190 |
+
status="started",
|
| 191 |
+
message="Training started in background"
|
| 192 |
+
)
|
| 193 |
+
|
| 194 |
+
except Exception as e:
|
| 195 |
+
logger.error(f"Training setup error: {str(e)}")
|
| 196 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 197 |
+
|
| 198 |
+
@app.get("/train/status", tags=["Training"])
|
| 199 |
+
async def get_training_status():
|
| 200 |
+
"""
|
| 201 |
+
Get current training status
|
| 202 |
+
"""
|
| 203 |
+
return {
|
| 204 |
+
"is_training": training_status.is_training,
|
| 205 |
+
"current_epoch": training_status.current_epoch,
|
| 206 |
+
"current_loss": training_status.current_loss,
|
| 207 |
+
"status": training_status.status
|
| 208 |
+
}
|
| 209 |
+
|
| 210 |
+
# Add training function
|
| 211 |
+
async def run_training(dataset_path: str, num_epochs: int, batch_size: int, learning_rate: float):
|
| 212 |
+
global model, tokenizer, training_status
|
| 213 |
+
|
| 214 |
+
try:
|
| 215 |
+
training_status.is_training = True
|
| 216 |
+
training_status.status = "loading_dataset"
|
| 217 |
+
|
| 218 |
+
# Load dataset
|
| 219 |
+
dataset = load_dataset("json", data_files=dataset_path)
|
| 220 |
+
|
| 221 |
+
training_status.status = "preprocessing"
|
| 222 |
+
|
| 223 |
+
# Preprocess function
|
| 224 |
+
def preprocess_function(examples):
|
| 225 |
+
return tokenizer(
|
| 226 |
+
examples["text"],
|
| 227 |
+
truncation=True,
|
| 228 |
+
padding="max_length",
|
| 229 |
+
max_length=512
|
| 230 |
+
)
|
| 231 |
+
|
| 232 |
+
# Tokenize dataset
|
| 233 |
+
tokenized_dataset = dataset.map(
|
| 234 |
+
preprocess_function,
|
| 235 |
+
batched=True,
|
| 236 |
+
remove_columns=dataset["train"].column_names
|
| 237 |
+
)
|
| 238 |
+
|
| 239 |
+
training_status.status = "training"
|
| 240 |
+
|
| 241 |
+
# Training arguments
|
| 242 |
+
training_args = TrainingArguments(
|
| 243 |
+
output_dir=f"{model_output_path}/checkpoints",
|
| 244 |
+
per_device_train_batch_size=batch_size,
|
| 245 |
+
gradient_accumulation_steps=4,
|
| 246 |
+
num_train_epochs=num_epochs,
|
| 247 |
+
learning_rate=learning_rate,
|
| 248 |
+
fp16=True,
|
| 249 |
+
save_steps=500,
|
| 250 |
+
logging_steps=100,
|
| 251 |
+
)
|
| 252 |
+
|
| 253 |
+
# Initialize trainer
|
| 254 |
+
trainer = Trainer(
|
| 255 |
+
model=model,
|
| 256 |
+
args=training_args,
|
| 257 |
+
train_dataset=tokenized_dataset["train"],
|
| 258 |
+
data_collator=DataCollatorForLanguageModeling(
|
| 259 |
+
tokenizer=tokenizer,
|
| 260 |
+
mlm=False
|
| 261 |
+
),
|
| 262 |
+
)
|
| 263 |
+
|
| 264 |
+
# Training callback to update status
|
| 265 |
+
class TrainingCallback(trainer.callback_handler):
|
| 266 |
+
def on_epoch_begin(self, args, state, control, **kwargs):
|
| 267 |
+
training_status.current_epoch = state.epoch
|
| 268 |
+
|
| 269 |
+
def on_log(self, args, state, control, logs=None, **kwargs):
|
| 270 |
+
if logs:
|
| 271 |
+
training_status.current_loss = logs.get("loss", None)
|
| 272 |
+
|
| 273 |
+
trainer.add_callback(TrainingCallback)
|
| 274 |
+
|
| 275 |
+
# Start training
|
| 276 |
+
trainer.train()
|
| 277 |
+
|
| 278 |
+
# Save the model
|
| 279 |
+
training_status.status = "saving"
|
| 280 |
+
model.save_pretrained(model_output_path)
|
| 281 |
+
tokenizer.save_pretrained(model_output_path)
|
| 282 |
+
|
| 283 |
+
training_status.status = "completed"
|
| 284 |
+
logger.info("Training completed successfully")
|
| 285 |
+
|
| 286 |
+
except Exception as e:
|
| 287 |
+
training_status.status = f"failed: {str(e)}"
|
| 288 |
+
logger.error(f"Training error: {str(e)}")
|
| 289 |
+
raise
|
| 290 |
+
|
| 291 |
+
finally:
|
| 292 |
+
training_status.is_training = False
|
| 293 |
+
|
| 294 |
+
# Update model initialization
|
| 295 |
+
def init_model():
|
| 296 |
+
try:
|
| 297 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 298 |
+
logger.info(f"Loading model on device: {device}")
|
| 299 |
+
|
| 300 |
+
# Try to load fine-tuned model if it exists
|
| 301 |
+
if os.path.exists(model_output_path):
|
| 302 |
+
tokenizer = AutoTokenizer.from_pretrained(model_output_path)
|
| 303 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 304 |
+
model_output_path,
|
| 305 |
+
torch_dtype=torch.float16 if device == "cuda" else torch.float32,
|
| 306 |
+
device_map="auto"
|
| 307 |
+
)
|
| 308 |
+
else:
|
| 309 |
+
# Load base model if no fine-tuned model exists
|
| 310 |
+
model_name = "nvidia/Meta-Llama-3.2-3B-Instruct-ONNX-INT4"
|
| 311 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 312 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 313 |
+
model_name,
|
| 314 |
+
torch_dtype=torch.float16 if device == "cuda" else torch.float32,
|
| 315 |
+
device_map="auto"
|
| 316 |
+
)
|
| 317 |
+
|
| 318 |
+
return tokenizer, model
|
| 319 |
+
except Exception as e:
|
| 320 |
+
logger.error(f"Model initialization error: {str(e)}")
|
| 321 |
+
raise
|