Update app.py
Browse files
app.py
CHANGED
@@ -1,25 +1,25 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
3 |
-
from utils import build_faiss_index, retrieve
|
4 |
-
|
5 |
-
# Load documents
|
6 |
-
with open("documents/1mg_rag.txt") as f:
|
7 |
-
docs = [line.strip() for line in f if line.strip()]
|
8 |
-
|
9 |
-
# Build FAISS index
|
10 |
-
index, _ = build_faiss_index(docs)
|
11 |
-
|
12 |
-
# Load quantized Mistral 7B
|
13 |
-
model_id = "TheBloke/Mistral-7B-Instruct-v0.2-GPTQ"
|
14 |
-
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
15 |
-
model =
|
16 |
-
|
17 |
-
generator = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
18 |
-
|
19 |
-
def answer_question(query):
|
20 |
-
context = "\n".join(retrieve(query, index, docs))
|
21 |
-
prompt = f"[INST] Use the following context to answer the question.\n\nContext:\n{context}\n\nQuestion: {query} [/INST]"
|
22 |
-
result = generator(prompt, max_new_tokens=256, do_sample=True, temperature=0.7)
|
23 |
-
return result[0]['generated_text']
|
24 |
-
|
25 |
-
gr.Interface(fn=answer_question, inputs="text", outputs="text", title="Mistral RAG").launch()
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
3 |
+
from utils import build_faiss_index, retrieve
|
4 |
+
|
5 |
+
# Load documents
|
6 |
+
with open("documents/1mg_rag.txt") as f:
|
7 |
+
docs = [line.strip() for line in f if line.strip()]
|
8 |
+
|
9 |
+
# Build FAISS index
|
10 |
+
index, _ = build_faiss_index(docs)
|
11 |
+
|
12 |
+
# Load quantized Mistral 7B
|
13 |
+
model_id = "TheBloke/Mistral-7B-Instruct-v0.2-GPTQ"
|
14 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
15 |
+
model = AutoGPTQForCausalLM.from_quantized(model_id, device_map="auto", trust_remote_code=True)
|
16 |
+
|
17 |
+
generator = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
18 |
+
|
19 |
+
def answer_question(query):
|
20 |
+
context = "\n".join(retrieve(query, index, docs))
|
21 |
+
prompt = f"[INST] Use the following context to answer the question.\n\nContext:\n{context}\n\nQuestion: {query} [/INST]"
|
22 |
+
result = generator(prompt, max_new_tokens=256, do_sample=True, temperature=0.7)
|
23 |
+
return result[0]['generated_text']
|
24 |
+
|
25 |
+
gr.Interface(fn=answer_question, inputs="text", outputs="text", title="Mistral RAG").launch()
|