Upload 2 files
Browse files
app.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
3 |
+
from utils import build_faiss_index, retrieve
|
4 |
+
|
5 |
+
# Load documents
|
6 |
+
with open("documents/1mg_rag.txt") as f:
|
7 |
+
docs = [line.strip() for line in f if line.strip()]
|
8 |
+
|
9 |
+
# Build FAISS index
|
10 |
+
index, _ = build_faiss_index(docs)
|
11 |
+
|
12 |
+
# Load quantized Mistral 7B
|
13 |
+
model_id = "TheBloke/Mistral-7B-Instruct-v0.2-GPTQ"
|
14 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
15 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", trust_remote_code=True)
|
16 |
+
|
17 |
+
generator = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
18 |
+
|
19 |
+
def answer_question(query):
|
20 |
+
context = "\n".join(retrieve(query, index, docs))
|
21 |
+
prompt = f"[INST] Use the following context to answer the question.\n\nContext:\n{context}\n\nQuestion: {query} [/INST]"
|
22 |
+
result = generator(prompt, max_new_tokens=256, do_sample=True, temperature=0.7)
|
23 |
+
return result[0]['generated_text']
|
24 |
+
|
25 |
+
gr.Interface(fn=answer_question, inputs="text", outputs="text", title="Mistral RAG").launch()
|
utils.py
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sentence_transformers import SentenceTransformer
|
2 |
+
import faiss
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
# Load MiniLM embedder
|
6 |
+
embedder = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
|
7 |
+
|
8 |
+
def embed_texts(texts):
|
9 |
+
return embedder.encode(texts, convert_to_tensor=False)
|
10 |
+
|
11 |
+
def build_faiss_index(texts):
|
12 |
+
embeddings = embed_texts(texts)
|
13 |
+
index = faiss.IndexFlatL2(embeddings[0].shape[0])
|
14 |
+
index.add(np.array(embeddings))
|
15 |
+
return index, embeddings
|
16 |
+
|
17 |
+
def retrieve(query, index, docs, k=3):
|
18 |
+
query_embedding = embed_texts([query])
|
19 |
+
distances, indices = index.search(np.array(query_embedding), k)
|
20 |
+
return [docs[i] for i in indices[0]]
|