Spaces:
Sleeping
Sleeping
File size: 3,668 Bytes
6b2a98f 26bc57d 6b2a98f 76d3296 6b2a98f 26bc57d 6b2a98f 26bc57d 6b2a98f e674021 6b2a98f 76d3296 6b2a98f 76d3296 6b2a98f b93b962 6b2a98f 80a2cf1 b93b962 6b2a98f fcf72a5 6b2a98f 26bc57d 6b2a98f 16cf867 6b2a98f 26bc57d 6b2a98f 26bc57d 6b2a98f b93b962 76d3296 26bc57d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 |
import gradio as gr
import huggingface_hub
from fastrtc import (
AdditionalOutputs,
ReplyOnPause,
WebRTC,
WebRTCData,
WebRTCError,
get_current_context,
get_hf_turn_credentials,
get_stt_model,
)
from gradio.utils import get_space
from openai import OpenAI
stt_model = get_stt_model()
conversations = {}
def response(
data: WebRTCData,
conversation: list[dict],
model: str = "meta-llama/Llama-3.2-3B-Instruct",
provider: str = "sambanova",
):
context = get_current_context()
print("conversation before", conversation)
if not provider.startswith("http") and not context.oauth_token:
raise WebRTCError("Please Sign in to use this demo.")
if data.audio is not None and data.audio[1].size > 0:
user_audio_text = stt_model.stt(data.audio)
conversation.append({"role": "user", "content": user_audio_text})
else:
conversation.append({"role": "user", "content": data.textbox})
yield AdditionalOutputs(conversation)
if provider.startswith("http"):
client = OpenAI(base_url=provider, api_key="ollama")
else:
client = huggingface_hub.InferenceClient(
api_key=context.oauth_token.token, # type: ignore
provider=provider, # type: ignore
)
request = client.chat.completions.create(
model=model,
messages=conversation, # type: ignore
temperature=1,
top_p=0.1,
)
response = {"role": "assistant", "content": request.choices[0].message.content}
conversation.append(response)
print("conversation after", conversation)
yield AdditionalOutputs(conversation)
css = """
footer {
display: none !important;
}
"""
providers = [
"black-forest-labs",
"cerebras",
"cohere",
"fal-ai",
"fireworks-ai",
"hf-inference",
"hyperbolic",
"nebius",
"novita",
"openai",
"replicate",
"sambanova",
"together",
]
def hide_token(provider: str):
if provider.startswith("http"):
return gr.Textbox(visible=False)
return gr.skip()
with gr.Blocks(css=css) as demo:
gr.HTML(
"""
<h1 style='text-align: center; display: flex; align-items: center; justify-content: center;'>
<img src="https://huggingface.co/datasets/freddyaboulton/bucket/resolve/main/AV_Huggy.png" alt="Streaming Huggy" style="height: 50px; margin-right: 10px"> FastRTC Chat
</h1>
"""
)
with gr.Sidebar():
gr.LoginButton()
model = gr.Dropdown(
choices=["meta-llama/Llama-3.2-3B-Instruct"],
allow_custom_value=True,
label="Model",
)
provider = gr.Dropdown(
label="Provider",
choices=providers,
value="auto",
info="Select a hf-compatible provider or type the url of your server, e.g. http://127.0.0.1:11434/v1 for ollama",
allow_custom_value=True,
)
cb = gr.Chatbot(type="messages", height=400)
webrtc = WebRTC(
modality="audio",
mode="send",
variant="textbox",
rtc_configuration=get_hf_turn_credentials if get_space() else None,
server_rtc_configuration=get_hf_turn_credentials(ttl=3_600 * 24 * 30)
if get_space()
else None,
)
webrtc.stream(
ReplyOnPause(response), # type: ignore
inputs=[webrtc, cb, model, provider],
outputs=[cb],
concurrency_limit=100,
)
webrtc.on_additional_outputs(
lambda old, new: new, inputs=[cb], outputs=[cb], concurrency_limit=100
)
if __name__ == "__main__":
demo.launch(server_port=7860) |