Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,83 @@
|
|
1 |
import streamlit as st
|
2 |
-
from src.models.predict_model import *
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
with st.sidebar:
|
5 |
st.write("# 🤖 Language Models")
|
|
|
1 |
import streamlit as st
|
2 |
+
# from src.models.predict_model import *
|
3 |
+
|
4 |
+
from src.models.pairwise_model import *
|
5 |
+
from src.features.text_utils import *
|
6 |
+
import regex as re
|
7 |
+
from src.models.bm25_utils import BM25Gensim
|
8 |
+
from src.models.qa_model import *
|
9 |
+
from tqdm.auto import tqdm
|
10 |
+
tqdm.pandas()
|
11 |
+
from datasets import load_dataset
|
12 |
+
|
13 |
+
df_wiki_windows = load_dataset("foxxy-hm/e2eqa-wiki", data_files="processed/wikipedia_20220620_cleaned_v2.csv")["train"].to_pandas()
|
14 |
+
df_wiki = load_dataset("foxxy-hm/e2eqa-wiki", data_files="wikipedia_20220620_short.csv")["train"].to_pandas()
|
15 |
+
df_wiki.title = df_wiki.title.apply(str)
|
16 |
+
|
17 |
+
entity_dict = load_dataset("foxxy-hm/e2eqa-wiki", data_files="processed/entities.json")["train"].to_dict()
|
18 |
+
new_dict = dict()
|
19 |
+
for key, val in entity_dict.items():
|
20 |
+
val = val[0].replace("wiki/", "").replace("_", " ")
|
21 |
+
entity_dict[key] = val
|
22 |
+
key = preprocess(key)
|
23 |
+
new_dict[key.lower()] = val
|
24 |
+
entity_dict.update(new_dict)
|
25 |
+
title2idx = dict([(x.strip(), y) for x, y in zip(df_wiki.title, df_wiki.index.values)])
|
26 |
+
|
27 |
+
qa_model = QAEnsembleModel("nguyenvulebinh/vi-mrc-large", ["models/qa_model_robust.bin"], entity_dict)
|
28 |
+
pairwise_model_stage1 = PairwiseModel("nguyenvulebinh/vi-mrc-base")#.half()
|
29 |
+
pairwise_model_stage1.load_state_dict(torch.load("models/pairwise_v2.bin", map_location=torch.device('cpu')))
|
30 |
+
pairwise_model_stage1.eval()
|
31 |
+
|
32 |
+
pairwise_model_stage2 = PairwiseModel("nguyenvulebinh/vi-mrc-base")#.half()
|
33 |
+
pairwise_model_stage2.load_state_dict(torch.load("models/pairwise_stage2_seed0.bin", map_location=torch.device('cpu')))
|
34 |
+
|
35 |
+
bm25_model_stage1 = BM25Gensim("models/bm25_stage1/", entity_dict, title2idx)
|
36 |
+
bm25_model_stage2_full = BM25Gensim("models/bm25_stage2/full_text/", entity_dict, title2idx)
|
37 |
+
bm25_model_stage2_title = BM25Gensim("models/bm25_stage2/title/", entity_dict, title2idx)
|
38 |
+
|
39 |
+
def get_answer_e2e(question):
|
40 |
+
#Bm25 retrieval for top200 candidates
|
41 |
+
query = preprocess(question).lower()
|
42 |
+
top_n, bm25_scores = bm25_model_stage1.get_topk_stage1(query, topk=200)
|
43 |
+
titles = [preprocess(df_wiki_windows.title.values[i]) for i in top_n]
|
44 |
+
texts = [preprocess(df_wiki_windows.text.values[i]) for i in top_n]
|
45 |
+
|
46 |
+
#Reranking with pairwise model for top10
|
47 |
+
question = preprocess(question)
|
48 |
+
ranking_preds = pairwise_model_stage1.stage1_ranking(question, texts)
|
49 |
+
ranking_scores = ranking_preds * bm25_scores
|
50 |
+
|
51 |
+
#Question answering
|
52 |
+
best_idxs = np.argsort(ranking_scores)[-10:]
|
53 |
+
ranking_scores = np.array(ranking_scores)[best_idxs]
|
54 |
+
texts = np.array(texts)[best_idxs]
|
55 |
+
best_answer = qa_model(question, texts, ranking_scores)
|
56 |
+
if best_answer is None:
|
57 |
+
return "Chịu"
|
58 |
+
bm25_answer = preprocess(str(best_answer).lower(), max_length=128, remove_puncts=True)
|
59 |
+
|
60 |
+
#Entity mapping
|
61 |
+
if not check_number(bm25_answer):
|
62 |
+
bm25_question = preprocess(str(question).lower(), max_length=128, remove_puncts=True)
|
63 |
+
bm25_question_answer = bm25_question + " " + bm25_answer
|
64 |
+
candidates, scores = bm25_model_stage2_title.get_topk_stage2(bm25_answer, raw_answer=best_answer)
|
65 |
+
titles = [df_wiki.title.values[i] for i in candidates]
|
66 |
+
texts = [df_wiki.text.values[i] for i in candidates]
|
67 |
+
ranking_preds = pairwise_model_stage2.stage2_ranking(question, best_answer, titles, texts)
|
68 |
+
if ranking_preds.max() >= 0.1:
|
69 |
+
final_answer = titles[ranking_preds.argmax()]
|
70 |
+
else:
|
71 |
+
candidates, scores = bm25_model_stage2_full.get_topk_stage2(bm25_question_answer)
|
72 |
+
titles = [df_wiki.title.values[i] for i in candidates] + titles
|
73 |
+
texts = [df_wiki.text.values[i] for i in candidates] + texts
|
74 |
+
ranking_preds = np.concatenate(
|
75 |
+
[pairwise_model_stage2.stage2_ranking(question, best_answer, titles, texts), ranking_preds])
|
76 |
+
final_answer = "wiki/"+titles[ranking_preds.argmax()].replace(" ","_")
|
77 |
+
else:
|
78 |
+
final_answer = bm25_answer.lower()
|
79 |
+
return final_answer
|
80 |
+
|
81 |
|
82 |
with st.sidebar:
|
83 |
st.write("# 🤖 Language Models")
|