Spaces:
Build error
Build error
File size: 19,781 Bytes
5432315 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 |
# Recycled from Ominicontrol and modified to accept an extra condition.
# While Zenctrl pursued a similar idea, it diverged structurally.
# We appreciate the clarity of Omini's implementation and decided to align with it.
import torch
from typing import List, Union, Optional, Dict, Any, Callable
from diffusers.models.attention_processor import Attention, F
from .lora_controller import enable_lora
from diffusers.models.embeddings import apply_rotary_emb
def attn_forward(
attn: Attention,
hidden_states: torch.FloatTensor,
encoder_hidden_states: torch.FloatTensor = None,
condition_latents: torch.FloatTensor = None,
extra_condition_latents: torch.FloatTensor = None,
attention_mask: Optional[torch.FloatTensor] = None,
image_rotary_emb: Optional[torch.Tensor] = None,
cond_rotary_emb: Optional[torch.Tensor] = None,
extra_cond_rotary_emb: Optional[torch.Tensor] = None,
model_config: Optional[Dict[str, Any]] = {},
) -> torch.FloatTensor:
batch_size, _, _ = (
hidden_states.shape
if encoder_hidden_states is None
else encoder_hidden_states.shape
)
with enable_lora(
(attn.to_q, attn.to_k, attn.to_v), model_config.get("latent_lora", False)
):
# `sample` projections.
query = attn.to_q(hidden_states)
key = attn.to_k(hidden_states)
value = attn.to_v(hidden_states)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
if attn.norm_q is not None:
query = attn.norm_q(query)
if attn.norm_k is not None:
key = attn.norm_k(key)
# the attention in FluxSingleTransformerBlock does not use `encoder_hidden_states`
if encoder_hidden_states is not None:
# `context` projections.
encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states)
encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)
encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view(
batch_size, -1, attn.heads, head_dim
).transpose(1, 2)
encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(
batch_size, -1, attn.heads, head_dim
).transpose(1, 2)
encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view(
batch_size, -1, attn.heads, head_dim
).transpose(1, 2)
if attn.norm_added_q is not None:
encoder_hidden_states_query_proj = attn.norm_added_q(
encoder_hidden_states_query_proj
)
if attn.norm_added_k is not None:
encoder_hidden_states_key_proj = attn.norm_added_k(
encoder_hidden_states_key_proj
)
# attention
query = torch.cat([encoder_hidden_states_query_proj, query], dim=2)
key = torch.cat([encoder_hidden_states_key_proj, key], dim=2)
value = torch.cat([encoder_hidden_states_value_proj, value], dim=2)
if image_rotary_emb is not None:
query = apply_rotary_emb(query, image_rotary_emb)
key = apply_rotary_emb(key, image_rotary_emb)
if condition_latents is not None:
cond_query = attn.to_q(condition_latents)
cond_key = attn.to_k(condition_latents)
cond_value = attn.to_v(condition_latents)
cond_query = cond_query.view(batch_size, -1, attn.heads, head_dim).transpose(
1, 2
)
cond_key = cond_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
cond_value = cond_value.view(batch_size, -1, attn.heads, head_dim).transpose(
1, 2
)
if attn.norm_q is not None:
cond_query = attn.norm_q(cond_query)
if attn.norm_k is not None:
cond_key = attn.norm_k(cond_key)
#extra condition
if extra_condition_latents is not None:
extra_cond_query = attn.to_q(extra_condition_latents)
extra_cond_key = attn.to_k(extra_condition_latents)
extra_cond_value = attn.to_v(extra_condition_latents)
extra_cond_query = extra_cond_query.view(batch_size, -1, attn.heads, head_dim).transpose(
1, 2
)
extra_cond_key = extra_cond_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
extra_cond_value = extra_cond_value.view(batch_size, -1, attn.heads, head_dim).transpose(
1, 2
)
if attn.norm_q is not None:
extra_cond_query = attn.norm_q(extra_cond_query)
if attn.norm_k is not None:
extra_cond_key = attn.norm_k(extra_cond_key)
if extra_cond_rotary_emb is not None:
extra_cond_query = apply_rotary_emb(extra_cond_query, extra_cond_rotary_emb)
extra_cond_key = apply_rotary_emb(extra_cond_key, extra_cond_rotary_emb)
if cond_rotary_emb is not None:
cond_query = apply_rotary_emb(cond_query, cond_rotary_emb)
cond_key = apply_rotary_emb(cond_key, cond_rotary_emb)
if condition_latents is not None:
if extra_condition_latents is not None:
query = torch.cat([query, cond_query, extra_cond_query], dim=2)
key = torch.cat([key, cond_key, extra_cond_key], dim=2)
value = torch.cat([value, cond_value, extra_cond_value], dim=2)
else:
query = torch.cat([query, cond_query], dim=2)
key = torch.cat([key, cond_key], dim=2)
value = torch.cat([value, cond_value], dim=2)
print("concat Omini latents: ", query.shape, key.shape, value.shape)
if not model_config.get("union_cond_attn", True):
attention_mask = torch.ones(
query.shape[2], key.shape[2], device=query.device, dtype=torch.bool
)
condition_n = cond_query.shape[2]
attention_mask[-condition_n:, :-condition_n] = False
attention_mask[:-condition_n, -condition_n:] = False
elif model_config.get("independent_condition", False):
attention_mask = torch.ones(
query.shape[2], key.shape[2], device=query.device, dtype=torch.bool
)
condition_n = cond_query.shape[2]
attention_mask[-condition_n:, :-condition_n] = False
if hasattr(attn, "c_factor"):
attention_mask = torch.zeros(
query.shape[2], key.shape[2], device=query.device, dtype=query.dtype
)
condition_n = cond_query.shape[2]
condition_e = extra_cond_query.shape[2]
bias = torch.log(attn.c_factor[0])
attention_mask[-condition_n-condition_e:-condition_e, :-condition_n-condition_e] = bias
attention_mask[:-condition_n-condition_e, -condition_n-condition_e:-condition_e] = bias
bias = torch.log(attn.c_factor[1])
attention_mask[-condition_e:, :-condition_n-condition_e] = bias
attention_mask[:-condition_n-condition_e, -condition_e:] = bias
hidden_states = F.scaled_dot_product_attention(
query, key, value, dropout_p=0.0, is_causal=False, attn_mask=attention_mask
)
hidden_states = hidden_states.transpose(1, 2).reshape(
batch_size, -1, attn.heads * head_dim
)
hidden_states = hidden_states.to(query.dtype)
if encoder_hidden_states is not None:
if condition_latents is not None:
if extra_condition_latents is not None:
encoder_hidden_states, hidden_states, condition_latents, extra_condition_latents = (
hidden_states[:, : encoder_hidden_states.shape[1]],
hidden_states[
:, encoder_hidden_states.shape[1] : -condition_latents.shape[1]*2
],
hidden_states[:, -condition_latents.shape[1]*2 :-condition_latents.shape[1]],
hidden_states[:, -condition_latents.shape[1] :], #extra condition latents
)
else:
encoder_hidden_states, hidden_states, condition_latents = (
hidden_states[:, : encoder_hidden_states.shape[1]],
hidden_states[
:, encoder_hidden_states.shape[1] : -condition_latents.shape[1]
],
hidden_states[:, -condition_latents.shape[1] :]
)
else:
encoder_hidden_states, hidden_states = (
hidden_states[:, : encoder_hidden_states.shape[1]],
hidden_states[:, encoder_hidden_states.shape[1] :],
)
with enable_lora((attn.to_out[0],), model_config.get("latent_lora", False)):
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
if condition_latents is not None:
condition_latents = attn.to_out[0](condition_latents)
condition_latents = attn.to_out[1](condition_latents)
if extra_condition_latents is not None:
extra_condition_latents = attn.to_out[0](extra_condition_latents)
extra_condition_latents = attn.to_out[1](extra_condition_latents)
return (
# (hidden_states, encoder_hidden_states, condition_latents, extra_condition_latents)
(hidden_states, encoder_hidden_states, condition_latents, extra_condition_latents)
if condition_latents is not None
else (hidden_states, encoder_hidden_states)
)
elif condition_latents is not None:
# if there are condition_latents, we need to separate the hidden_states and the condition_latents
if extra_condition_latents is not None:
hidden_states, condition_latents, extra_condition_latents = (
hidden_states[:, : -condition_latents.shape[1]*2],
hidden_states[:, -condition_latents.shape[1]*2 :-condition_latents.shape[1]],
hidden_states[:, -condition_latents.shape[1] :],
)
else:
hidden_states, condition_latents = (
hidden_states[:, : -condition_latents.shape[1]],
hidden_states[:, -condition_latents.shape[1] :],
)
return hidden_states, condition_latents, extra_condition_latents
else:
return hidden_states
def block_forward(
self,
hidden_states: torch.FloatTensor,
encoder_hidden_states: torch.FloatTensor,
condition_latents: torch.FloatTensor,
extra_condition_latents: torch.FloatTensor,
temb: torch.FloatTensor,
cond_temb: torch.FloatTensor,
extra_cond_temb: torch.FloatTensor,
cond_rotary_emb=None,
extra_cond_rotary_emb=None,
image_rotary_emb=None,
model_config: Optional[Dict[str, Any]] = {},
):
use_cond = condition_latents is not None
use_extra_cond = extra_condition_latents is not None
with enable_lora((self.norm1.linear,), model_config.get("latent_lora", False)):
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
hidden_states, emb=temb
)
norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = (
self.norm1_context(encoder_hidden_states, emb=temb)
)
if use_cond:
(
norm_condition_latents,
cond_gate_msa,
cond_shift_mlp,
cond_scale_mlp,
cond_gate_mlp,
) = self.norm1(condition_latents, emb=cond_temb)
(
norm_extra_condition_latents,
extra_cond_gate_msa,
extra_cond_shift_mlp,
extra_cond_scale_mlp,
extra_cond_gate_mlp,
) = self.norm1(extra_condition_latents, emb=extra_cond_temb)
# Attention.
result = attn_forward(
self.attn,
model_config=model_config,
hidden_states=norm_hidden_states,
encoder_hidden_states=norm_encoder_hidden_states,
condition_latents=norm_condition_latents if use_cond else None,
extra_condition_latents=norm_extra_condition_latents if use_cond else None,
image_rotary_emb=image_rotary_emb,
cond_rotary_emb=cond_rotary_emb if use_cond else None,
extra_cond_rotary_emb=extra_cond_rotary_emb if use_extra_cond else None,
)
# print("in self block: ", result.shape)
attn_output, context_attn_output = result[:2]
cond_attn_output = result[2] if use_cond else None
extra_condition_output = result[3]
# Process attention outputs for the `hidden_states`.
# 1. hidden_states
attn_output = gate_msa.unsqueeze(1) * attn_output
hidden_states = hidden_states + attn_output
# 2. encoder_hidden_states
context_attn_output = c_gate_msa.unsqueeze(1) * context_attn_output
encoder_hidden_states = encoder_hidden_states + context_attn_output
# 3. condition_latents
if use_cond:
cond_attn_output = cond_gate_msa.unsqueeze(1) * cond_attn_output
condition_latents = condition_latents + cond_attn_output
#need to make new condition_extra and add extra_condition_output
if use_extra_cond:
extra_condition_output = extra_cond_gate_msa.unsqueeze(1) * extra_condition_output
extra_condition_latents = extra_condition_latents + extra_condition_output
if model_config.get("add_cond_attn", False):
hidden_states += cond_attn_output
hidden_states += extra_condition_output
# LayerNorm + MLP.
# 1. hidden_states
norm_hidden_states = self.norm2(hidden_states)
norm_hidden_states = (
norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
)
# 2. encoder_hidden_states
norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states)
norm_encoder_hidden_states = (
norm_encoder_hidden_states * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None]
)
# 3. condition_latents
if use_cond:
norm_condition_latents = self.norm2(condition_latents)
norm_condition_latents = (
norm_condition_latents * (1 + cond_scale_mlp[:, None])
+ cond_shift_mlp[:, None]
)
if use_extra_cond:
#added conditions
extra_norm_condition_latents = self.norm2(extra_condition_latents)
extra_norm_condition_latents = (
extra_norm_condition_latents * (1 + extra_cond_scale_mlp[:, None])
+ extra_cond_shift_mlp[:, None]
)
# Feed-forward.
with enable_lora((self.ff.net[2],), model_config.get("latent_lora", False)):
# 1. hidden_states
ff_output = self.ff(norm_hidden_states)
ff_output = gate_mlp.unsqueeze(1) * ff_output
# 2. encoder_hidden_states
context_ff_output = self.ff_context(norm_encoder_hidden_states)
context_ff_output = c_gate_mlp.unsqueeze(1) * context_ff_output
# 3. condition_latents
if use_cond:
cond_ff_output = self.ff(norm_condition_latents)
cond_ff_output = cond_gate_mlp.unsqueeze(1) * cond_ff_output
if use_extra_cond:
extra_cond_ff_output = self.ff(extra_norm_condition_latents)
extra_cond_ff_output = extra_cond_gate_mlp.unsqueeze(1) * extra_cond_ff_output
# Process feed-forward outputs.
hidden_states = hidden_states + ff_output
encoder_hidden_states = encoder_hidden_states + context_ff_output
if use_cond:
condition_latents = condition_latents + cond_ff_output
if use_extra_cond:
extra_condition_latents = extra_condition_latents + extra_cond_ff_output
# Clip to avoid overflow.
if encoder_hidden_states.dtype == torch.float16:
encoder_hidden_states = encoder_hidden_states.clip(-65504, 65504)
return encoder_hidden_states, hidden_states, condition_latents, extra_condition_latents if use_cond else None
def single_block_forward(
self,
hidden_states: torch.FloatTensor,
temb: torch.FloatTensor,
image_rotary_emb=None,
condition_latents: torch.FloatTensor = None,
extra_condition_latents: torch.FloatTensor = None,
cond_temb: torch.FloatTensor = None,
extra_cond_temb: torch.FloatTensor = None,
cond_rotary_emb=None,
extra_cond_rotary_emb=None,
model_config: Optional[Dict[str, Any]] = {},
):
using_cond = condition_latents is not None
using_extra_cond = extra_condition_latents is not None
residual = hidden_states
with enable_lora(
(
self.norm.linear,
self.proj_mlp,
),
model_config.get("latent_lora", False),
):
norm_hidden_states, gate = self.norm(hidden_states, emb=temb)
mlp_hidden_states = self.act_mlp(self.proj_mlp(norm_hidden_states))
if using_cond:
residual_cond = condition_latents
norm_condition_latents, cond_gate = self.norm(condition_latents, emb=cond_temb)
mlp_cond_hidden_states = self.act_mlp(self.proj_mlp(norm_condition_latents))
if using_extra_cond:
extra_residual_cond = extra_condition_latents
extra_norm_condition_latents, extra_cond_gate = self.norm(extra_condition_latents, emb=extra_cond_temb)
extra_mlp_cond_hidden_states = self.act_mlp(self.proj_mlp(extra_norm_condition_latents))
attn_output = attn_forward(
self.attn,
model_config=model_config,
hidden_states=norm_hidden_states,
image_rotary_emb=image_rotary_emb,
**(
{
"condition_latents": norm_condition_latents,
"cond_rotary_emb": cond_rotary_emb if using_cond else None,
"extra_condition_latents": extra_norm_condition_latents if using_cond else None,
"extra_cond_rotary_emb": extra_cond_rotary_emb if using_cond else None,
}
if using_cond
else {}
),
)
if using_cond:
attn_output, cond_attn_output, extra_cond_attn_output = attn_output
with enable_lora((self.proj_out,), model_config.get("latent_lora", False)):
hidden_states = torch.cat([attn_output, mlp_hidden_states], dim=2)
gate = gate.unsqueeze(1)
hidden_states = gate * self.proj_out(hidden_states)
hidden_states = residual + hidden_states
if using_cond:
condition_latents = torch.cat([cond_attn_output, mlp_cond_hidden_states], dim=2)
cond_gate = cond_gate.unsqueeze(1)
condition_latents = cond_gate * self.proj_out(condition_latents)
condition_latents = residual_cond + condition_latents
extra_condition_latents = torch.cat([extra_cond_attn_output, extra_mlp_cond_hidden_states], dim=2)
extra_cond_gate = extra_cond_gate.unsqueeze(1)
extra_condition_latents = extra_cond_gate * self.proj_out(extra_condition_latents)
extra_condition_latents = extra_residual_cond + extra_condition_latents
if hidden_states.dtype == torch.float16:
hidden_states = hidden_states.clip(-65504, 65504)
return hidden_states if not using_cond else (hidden_states, condition_latents, extra_condition_latents)
|