|
import torch |
|
from torch import Tensor |
|
|
|
|
|
def multinomial(input: Tensor, num_samples: int, replacement=False, *, generator=None): |
|
input_ = input.reshape(-1, input.shape[-1]) |
|
output_ = torch.multinomial( |
|
input_, num_samples=num_samples, replacement=replacement, generator=generator |
|
) |
|
output = output_.reshape(*list(input.shape[:-1]), -1) |
|
return output |
|
|
|
|
|
def sample_top_k(probs: Tensor, k: int) -> Tensor: |
|
top_k_value, _ = torch.topk(probs, k, dim=-1) |
|
min_value_top_k = top_k_value[..., [-1]] |
|
probs *= (probs >= min_value_top_k).float() |
|
probs.div_(probs.sum(dim=-1, keepdim=True)) |
|
next_token = multinomial(probs, num_samples=1) |
|
return next_token |
|
|
|
|
|
def sample_top_p(probs: Tensor, p: float) -> Tensor: |
|
probs_sort, probs_idx = torch.sort(probs, dim=-1, descending=True) |
|
probs_sum = torch.cumsum(probs_sort, dim=-1) |
|
mask = probs_sum - probs_sort > p |
|
probs_sort *= (~mask).float() |
|
probs_sort.div_(probs_sort.sum(dim=-1, keepdim=True)) |
|
next_token = multinomial(probs_sort, num_samples=1) |
|
next_token = torch.gather(probs_idx, -1, next_token) |
|
|
|
return next_token |
|
|
|
|
|
def sample_top_p_top_k(probs: Tensor, p: float, top_k: int): |
|
probs_sort, probs_idx = torch.sort(probs, dim=-1, descending=True) |
|
probs_sum = torch.cumsum(probs_sort, dim=-1) |
|
mask = probs_sum - probs_sort > p |
|
probs_sort *= (~mask).float() |
|
probs_sort.div_(probs_sort.sum(dim=-1, keepdim=True)) |
|
next_token = sample_top_k(probs_sort, top_k) |
|
next_token = torch.gather(probs_idx, -1, next_token) |
|
return next_token |
|
|