Spaces:
Running
Running
File size: 10,214 Bytes
afe1a07 b300542 afe1a07 368ac79 afe1a07 368ac79 afe1a07 b300542 313d650 afe1a07 7a5b013 afe1a07 368ac79 afe1a07 368ac79 afe1a07 b300542 368ac79 b300542 368ac79 923a82b 368ac79 afe1a07 b300542 923a82b afe1a07 b300542 923a82b 4f4644c b300542 923a82b b300542 923a82b 368ac79 7a5b013 368ac79 7a5b013 368ac79 7a5b013 368ac79 7a5b013 368ac79 7a5b013 afe1a07 b300542 efb5d8f 313d650 efb5d8f b300542 afe1a07 b300542 efb5d8f 368ac79 b300542 afe1a07 b300542 afe1a07 771145b afe1a07 368ac79 b300542 771145b 368ac79 afe1a07 357478d 20d68fc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 |
import os
import torch
import gradio as gr
from einops import rearrange, repeat
from diffusers import AutoencoderKL
from transformers import SpeechT5HifiGan
from scipy.io import wavfile
import glob
import random
import numpy as np
import re
# Import necessary functions and classes
from utils import load_t5, load_clap, quantize_model
from train import RF
from constants import build_model
# Global variables to store loaded models and resources
global_model = None
global_t5 = None
global_clap = None
global_vae = None
global_vocoder = None
global_diffusion = None
current_model_name = None
# Set the models directory
MODELS_DIR = os.path.join(os.path.dirname(__file__), "models")
GENERATIONS_DIR = os.path.join(os.path.dirname(__file__), "generations")
def prepare(t5, clip, img, prompt):
bs, c, h, w = img.shape
if bs == 1 and not isinstance(prompt, str):
bs = len(prompt)
img = rearrange(img, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2)
if img.shape[0] == 1 and bs > 1:
img = repeat(img, "1 ... -> bs ...", bs=bs)
img_ids = torch.zeros(h // 2, w // 2, 3)
img_ids[..., 1] = img_ids[..., 1] + torch.arange(h // 2)[:, None]
img_ids[..., 2] = img_ids[..., 2] + torch.arange(w // 2)[None, :]
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs)
if isinstance(prompt, str):
prompt = [prompt]
# Generate text embeddings
txt = t5(prompt)
if txt.shape[0] == 1 and bs > 1:
txt = repeat(txt, "1 ... -> bs ...", bs=bs)
txt_ids = torch.zeros(bs, txt.shape[1], 3)
vec = clip(prompt)
if vec.shape[0] == 1 and bs > 1:
vec = repeat(vec, "1 ... -> bs ...", bs=bs)
return img, {
"img_ids": img_ids.to(img.device),
"txt": txt.to(img.device),
"txt_ids": txt_ids.to(img.device),
"y": vec.to(img.device),
}
def unload_current_model():
global global_model, current_model_name
if global_model is not None:
del global_model
torch.cuda.empty_cache()
global_model = None
current_model_name = None
def load_model(model_name):
global global_model, current_model_name
device = "cpu" # Force CPU usage
unload_current_model()
# Determine model size from filename
if 'musicflow_b' in model_name:
model_size = "base"
elif 'musicflow_g' in model_name:
model_size = "giant"
elif 'musicflow_l' in model_name:
model_size = "large"
elif 'musicflow_s' in model_name:
model_size = "small"
else:
model_size = "base" # Default to base if unrecognized
print(f"Loading {model_size} model: {model_name}")
model_path = os.path.join(MODELS_DIR, model_name)
global_model = build_model(model_size, device="cpu").to(device)
try:
state_dict = torch.load(model_path, map_location=device, weights_only=True)
global_model.load_state_dict(state_dict['ema'], strict=False)
global_model.eval()
# Quantize the model for CPU inference
global_model = quantize_model(global_model)
global_model.model_path = model_path
current_model_name = model_name
return f"Successfully loaded and quantized model: {model_name}"
except Exception as e:
print(f"Error loading model {model_name}: {str(e)}")
return f"Failed to load model: {model_name}. Error: {str(e)}"
def load_resources():
global global_t5, global_clap, global_vae, global_vocoder, global_diffusion
device = "cpu"
print("Loading T5 and CLAP models...")
global_t5 = load_t5(device, max_length=256)
global_clap = load_clap(device, max_length=256)
print("Loading VAE and vocoder...")
global_vae = AutoencoderKL.from_pretrained('cvssp/audioldm2', subfolder="vae").to(device)
global_vocoder = SpeechT5HifiGan.from_pretrained('cvssp/audioldm2', subfolder="vocoder").to(device)
print("Initializing diffusion...")
global_diffusion = RF()
print("Base resources loaded successfully!")
def generate_music(prompt, seed, cfg_scale, steps, duration, batch_size=4, progress=gr.Progress()):
global global_model, global_t5, global_clap, global_vae, global_vocoder, global_diffusion
if global_model is None:
return "Please select and load a model first.", None
if seed == 0:
seed = random.randint(1, 1000000)
print(f"Using seed: {seed}")
device = "cpu"
torch.manual_seed(seed)
torch.set_grad_enabled(False)
# Calculate the number of segments needed for the desired duration
segment_duration = 10 # Each segment is 10 seconds
num_segments = int(np.ceil(duration / segment_duration))
all_waveforms = []
for i in range(num_segments):
progress(i / num_segments, desc=f"Generating segment {i+1}/{num_segments}")
# Use the same seed for all segments
torch.manual_seed(seed + i) # Add i to slightly vary each segment while maintaining consistency
latent_size = (256, 16)
conds_txt = [prompt]
unconds_txt = ["low quality, gentle"]
L = len(conds_txt)
init_noise = torch.randn(L, 8, latent_size[0], latent_size[1]).to(device)
img, conds = prepare(global_t5, global_clap, init_noise, conds_txt)
_, unconds = prepare(global_t5, global_clap, init_noise, unconds_txt)
# Implement batching for CPU inference
images = []
for batch_start in range(0, img.shape[0], batch_size):
batch_end = min(batch_start + batch_size, img.shape[0])
batch_img = img[batch_start:batch_end]
batch_conds = {k: v[batch_start:batch_end] for k, v in conds.items()}
batch_unconds = {k: v[batch_start:batch_end] for k, v in unconds.items()}
with torch.no_grad():
batch_images = global_diffusion.sample_with_xps(
global_model, batch_img, conds=batch_conds, null_cond=batch_unconds,
sample_steps=steps, cfg=cfg_scale
)
images.append(batch_images[-1])
images = torch.cat(images, dim=0)
images = rearrange(
images,
"b (h w) (c ph pw) -> b c (h ph) (w pw)",
h=128,
w=8,
ph=2,
pw=2,)
latents = 1 / global_vae.config.scaling_factor * images
mel_spectrogram = global_vae.decode(latents).sample
x_i = mel_spectrogram[0]
if x_i.dim() == 4:
x_i = x_i.squeeze(1)
waveform = global_vocoder(x_i)
waveform = waveform[0].cpu().float().detach().numpy()
all_waveforms.append(waveform)
# Concatenate all waveforms
final_waveform = np.concatenate(all_waveforms)
# Trim to exact duration
sample_rate = 16000
final_waveform = final_waveform[:int(duration * sample_rate)]
progress(0.9, desc="Saving audio file")
# Create 'generations' folder
os.makedirs(GENERATIONS_DIR, exist_ok=True)
# Generate filename
prompt_part = re.sub(r'[^\w\s-]', '', prompt)[:10].strip().replace(' ', '_')
model_name = os.path.splitext(os.path.basename(global_model.model_path))[0]
model_suffix = '_mf_b' if model_name == 'musicflow_b' else f'_{model_name}'
base_filename = f"{prompt_part}_{seed}{model_suffix}"
output_path = os.path.join(GENERATIONS_DIR, f"{base_filename}.wav")
# Check if file exists and add numerical suffix if needed
counter = 1
while os.path.exists(output_path):
output_path = os.path.join(GENERATIONS_DIR, f"{base_filename}_{counter}.wav")
counter += 1
wavfile.write(output_path, sample_rate, final_waveform)
progress(1.0, desc="Audio generation complete")
return f"Generated with seed: {seed}", output_path
# Load base resources at startup
load_resources()
# Get list of .pt files in the models directory
model_files = glob.glob(os.path.join(MODELS_DIR, "*.pt"))
model_choices = [os.path.basename(f) for f in model_files]
# Ensure we have at least one model
if not model_choices:
print(f"No models found in the models directory: {MODELS_DIR}")
print("Available files in the directory:")
print(os.listdir(MODELS_DIR))
model_choices = ["No models available"]
# Set default model
default_model = 'musicflow_b.pt' if 'musicflow_b.pt' in model_choices else model_choices[0]
# Set up dark grey theme
theme = gr.themes.Monochrome(
primary_hue="gray",
secondary_hue="gray",
neutral_hue="gray",
radius_size=gr.themes.sizes.radius_sm,
)
# Gradio Interface
with gr.Blocks(theme=theme) as iface:
gr.Markdown(
"""
<div style="text-align: center;">
<h1>FluxMusic Generator</h1>
<p>Generate music based on text prompts using FluxMusic model.</p>
</div>
""")
with gr.Row():
model_dropdown = gr.Dropdown(choices=model_choices, label="Select Model", value=default_model)
load_model_button = gr.Button("Load Model")
model_status = gr.Textbox(label="Model Status", value="No model loaded")
with gr.Row():
prompt = gr.Textbox(label="Prompt")
seed = gr.Number(label="Seed", value=0)
with gr.Row():
cfg_scale = gr.Slider(minimum=1, maximum=40, step=0.1, label="CFG Scale", value=20)
steps = gr.Slider(minimum=10, maximum=200, step=1, label="Steps", value=100)
duration = gr.Number(label="Duration (seconds)", value=10, minimum=10, maximum=300, step=1)
generate_button = gr.Button("Generate Music")
output_status = gr.Textbox(label="Generation Status")
output_audio = gr.Audio(type="filepath")
def on_load_model_click(model_name):
result = load_model(model_name)
return result
load_model_button.click(on_load_model_click, inputs=[model_dropdown], outputs=[model_status])
generate_button.click(generate_music, inputs=[prompt, seed, cfg_scale, steps, duration], outputs=[output_status, output_audio])
# Load default model on startup
iface.load(lambda: on_load_model_click(default_model), inputs=None, outputs=None)
# Launch the interface
iface.launch() |