Spaces:
Sleeping
Sleeping
File size: 8,720 Bytes
cbdb41f 2352e73 4732065 78ead36 2352e73 091b3ba b198353 4732065 2352e73 4732065 d161181 4732065 2352e73 cbdb41f 4732065 cbdb41f 4732065 78ead36 cbdb41f d161181 cbdb41f f07fe35 7efb86f cbdb41f 4732065 cbdb41f 4732065 cbdb41f 4732065 cbdb41f 4732065 cbdb41f 4732065 cbdb41f 4732065 cbdb41f 4732065 cbdb41f 4732065 7efb86f 4732065 cbdb41f 4732065 cbdb41f 4732065 7efb86f cbdb41f 4732065 cbdb41f 7efb86f 4732065 d161181 4732065 cbdb41f 4732065 cbdb41f 4732065 7efb86f 4732065 7efb86f d161181 7efb86f 4732065 2352e73 7255251 cbdb41f 4732065 d161181 4732065 d161181 4732065 d161181 2352e73 d161181 2352e73 cbdb41f 2352e73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 |
import numpy as np
from pathlib import Path
import paderbox as pb
import torch
from onnxruntime import InferenceSession
from pvq_manipulation.models.vits import Vits_NT
from pvq_manipulation.models.ffjord import FFJORD
from pvq_manipulation.models.hubert import HubertExtractor, SID_LARGE_LAYER
import librosa
from pvq_manipulation.helper.vad import EnergyVAD
import gradio as gr
from pvq_manipulation.helper.creapy_wrapper import process_file
from creapy.utils import config
import os
torch.set_num_threads(os.cpu_count() or 1)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
pvq_labels = ['Weight', 'Resonance', 'Breathiness', 'Roughness', 'Loudness', 'Strain', 'Pitch']
dataset_dict = pb.io.load_yaml('./Dataset/dataset.yaml')
cached_example_id = None
cached_loaded_example = None
cached_labels = None
cached_d_vector = None
cached_unmanipulated = None
cached_transcription = None
# path to stats
stats_path = Path('./Dataset/Embeddings/')
# load normalizing flow
storage_dir_normalizing_flow = Path("./models/norm_flow")
config_norm_flow = pb.io.load_yaml(storage_dir_normalizing_flow / "config.json")
normalizing_flow = FFJORD.load_model(storage_dir_normalizing_flow, checkpoint="model.pt", device=device)
# load tts model
storage_dir_tts = Path("./models/tts_model/")
tts_model = Vits_NT.load_model(storage_dir_tts, "model.pt")
config._CONFIG_DIR = "./pvq_manipulation/helper/creapy_config.yaml"
config._USER_CONFIG_DIR = "./pvq_manipulation/helper/user_config.yaml"
config.USER_CONFIG_DIR = "./pvq_manipulation/helper/user_config.yaml"
# load hubert features model
hubert_model = HubertExtractor(
layer=SID_LARGE_LAYER,
model_name="HUBERT_LARGE",
backend="torchaudio",
device=device,
# storage_dir= # target storage dir hubert model
)
# load pvq models
reg_stor_dir = Path('./models/pvq_extractor/')
onnx_sessions = {}
for pvq in pvq_labels:
onnx_path = reg_stor_dir / f"{pvq}.onnx"
onnx_sessions[pvq] = InferenceSession(
str(onnx_path),
providers=["CPUExecutionProvider"]
)
def get_manipulation(
example,
labels,
flow,
tts_model,
d_vector,
config_norm_flow,
manipulation_idx=0,
manipulation_fkt=1,
):
labels_manipulated = labels.clone()
labels_manipulated[:, manipulation_idx] += manipulation_fkt
if config_norm_flow['flag_remove_mean']:
global_mean = pb.io.load(stats_path / "mean.json")
global_mean = torch.tensor(global_mean, dtype=torch.float32)
speaker_embedding_norm = (d_vector - global_mean)
global_std = pb.io.load(stats_path / "std.json")
global_std = torch.tensor(global_std, dtype=torch.float32)
speaker_embedding_norm = speaker_embedding_norm / global_std
else:
speaker_embedding_norm = d_vector
output_forward = flow.forward((speaker_embedding_norm.float(), labels))[0]
sampled_class_manipulated = flow.sample((output_forward, labels_manipulated))[0]
if config_norm_flow['flag_remove_mean']:
sampled_class_manipulated = (sampled_class_manipulated * global_std + global_mean)
wav = tts_model.synthesize_from_example({
'text': example['transcription'],
'd_vector': d_vector.detach().numpy(),
'd_vector_man': sampled_class_manipulated.detach().numpy(),
'd_vector_storage_root': example['d_vector_storage_root'],
})
return wav
def get_creak_label(example):
audio_data = example['loaded_audio_data']['16_000']
test, y_pred, included_indices = process_file(audio_data)
mean_creak = np.mean(y_pred[included_indices])
return mean_creak * 100
def load_speaker_labels(example):
audio_data = torch.tensor(example['loaded_audio_data']['16_000'], dtype=torch.float)[None, :]
num_samples = torch.tensor([audio_data.shape[-1]])
if torch.cuda.is_available():
audio_data = audio_data.cuda()
num_samples = num_samples.cuda()
with torch.no_grad():
features, seq_len = hubert_model(
audio_data,
16_000,
sequence_lengths=num_samples,
)
features = np.mean(features.squeeze(0).detach().cpu().numpy(), axis=-1)
pvqd_predictions = {}
for pvq in pvq_labels:
sess = onnx_sessions[pvq]
pred = sess.run(None, {"X": features[None]})[0].squeeze(1)
pvqd_predictions[pvq] = pred.tolist()[0]
pvqd_predictions['Creak_mean'] = get_creak_label(example)
labels = [pvqd_predictions[key] / 100 for key in pvq_labels + ["Creak_mean"]]
return torch.tensor(labels, device=device).float()
def load_audio_files(example):
observation_loaded, sr = pb.io.load_audio(example['audio_path']['observation'], return_sample_rate=True)
example['loaded_audio_data'] = {}
observation = librosa.resample(observation_loaded, orig_sr=sr, target_sr=16_000)
vad = EnergyVAD(sample_rate=16_000)
if observation.ndim == 1:
observation = observation[None, :]
observation = vad({'audio_data': observation})['audio_data']
example['loaded_audio_data']['16_000'] = observation
observation = librosa.resample(observation, orig_sr=sr, target_sr=24_000)
vad = EnergyVAD(sample_rate=24_000)
if observation.ndim == 1:
observation = observation[None, :]
observation = vad({'audio_data': observation})['audio_data']
example['loaded_audio_data']['24_000'] = observation
return example
def delete_cache():
global cached_example_id, cached_loaded_example, cached_labels, cached_d_vector, cached_unmanipulated
del cached_example_id
del cached_loaded_example
del cached_labels
del cached_d_vector
del cached_unmanipulated
def update_manipulation(manipulation_idx, example_id, transcription, manipulation_fkt):
global cached_example_id, cached_loaded_example, cached_labels, cached_d_vector, example_database, cached_unmanipulated, cached_transcription
speaker_id = dataset_dict['dataset'][example_id]['speaker_id']
example = {
'audio_path': {'observation': f"./Dataset/Audio_files/{example_id}.wav"},
'd_vector_storage_root': f"./Saved_models/Dataset/Embeddings/{speaker_id}/{example_id}.pth",
'speaker_id': speaker_id,
'example_id': example_id,
'transcription': transcription
}
if cached_example_id != example_id:
delete_cache()
cached_loaded_example = load_audio_files(example)
cached_d_vector = torch.load(f"./Dataset/Embeddings/{speaker_id}/{example_id}.pth")
cached_labels = load_speaker_labels(example)
cached_example_id = example_id
with torch.no_grad():
cached_unmanipulated = tts_model.synthesize_from_example({
'text': transcription,
'd_vector': cached_d_vector.detach().numpy(),
})
cached_transcription = transcription
if cached_loaded_example != example or transcription != cached_transcription:
with torch.no_grad():
cached_unmanipulated = tts_model.synthesize_from_example({
'text': transcription,
'd_vector': cached_d_vector.detach().numpy(),
})
cached_transcription = transcription
with torch.no_grad():
wav_manipulated = get_manipulation(
example=example,
d_vector=cached_d_vector,
labels=cached_labels[None, :],
flow=normalizing_flow,
tts_model=tts_model,
manipulation_idx=manipulation_idx,
manipulation_fkt=manipulation_fkt,
config_norm_flow=config_norm_flow,
)
return (24_000, cached_unmanipulated), (24_000, wav_manipulated)
demo = gr.Interface(
title="Perceptual Voice Quality (PVQ) Manipulation",
fn=update_manipulation,
inputs=[
gr.Dropdown(
label="PVQ Feature",
choices=[('Weight', 0), ('Resonance', 1), ('Breathiness', 2), ('Roughness', 3), ('Creak', 7)],
value=2, type="value"
),
gr.Dropdown(
label="Speaker",
choices=[(str(idx), example_id) for idx, example_id in enumerate(dataset_dict['dataset'].keys())],
value="1422_149735_000006_000000",
type="value"
),
gr.Textbox(
label="Text Input",
value="Department of Communications Engineering Paderborn University.",
placeholder='Type something'
),
gr.Slider(label="Manipulation Intensity", minimum=-1.0, maximum=2.0, value=1.0, step=0.1),
],
outputs=[gr.Audio(label="original synthesized utterance"), gr.Audio(label="manipulated synthesized utterance")],
)
if __name__ == "__main__":
demo.launch(share=True)
|