Spaces:
Running
on
Zero
Running
on
Zero
clean up
Browse files- gradio_ui.py +109 -292
gradio_ui.py
CHANGED
@@ -1,88 +1,107 @@
|
|
1 |
-
import
|
2 |
-
import PIL
|
3 |
import torch
|
4 |
-
import
|
5 |
import gradio as gr
|
6 |
-
import os
|
7 |
|
8 |
from typing import Optional
|
9 |
from accelerate import Accelerator
|
10 |
from diffusers import (
|
11 |
AutoencoderKL,
|
12 |
-
StableDiffusionXLControlNetPipeline,
|
13 |
ControlNetModel,
|
14 |
UNet2DConditionModel,
|
15 |
)
|
16 |
from transformers import (
|
17 |
-
BlipProcessor, BlipForConditionalGeneration,
|
18 |
-
VisionEncoderDecoderModel, ViTImageProcessor, AutoTokenizer
|
19 |
)
|
20 |
-
from huggingface_hub import hf_hub_download
|
21 |
from safetensors.torch import load_file
|
22 |
-
from
|
23 |
|
24 |
-
|
25 |
|
26 |
-
|
|
|
|
|
|
|
27 |
os.makedirs("sdxl_light_caption_output", exist_ok=True)
|
28 |
-
os.makedirs("sdxl_light_custom_caption_output", exist_ok=True)
|
29 |
|
|
|
30 |
snapshot_download(
|
31 |
-
repo_id
|
32 |
-
local_dir
|
33 |
)
|
34 |
|
35 |
-
|
36 |
-
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
|
|
40 |
|
41 |
def apply_color(image: PIL.Image.Image, color_map: PIL.Image.Image) -> PIL.Image.Image:
|
42 |
-
# Convert
|
43 |
image_lab = image.convert('LAB')
|
44 |
color_map_lab = color_map.convert('LAB')
|
45 |
|
46 |
-
#
|
47 |
-
l,
|
48 |
_, a_map, b_map = color_map_lab.split()
|
49 |
-
|
50 |
-
# Merge LAB channels with color map
|
51 |
merged_lab = PIL.Image.merge('LAB', (l, a_map, b_map))
|
52 |
|
53 |
-
|
54 |
-
result_rgb = merged_lab.convert('RGB')
|
55 |
-
return result_rgb
|
56 |
-
|
57 |
-
def remove_unlikely_words(prompt: str) -> str:
|
58 |
-
"""
|
59 |
-
Removes unlikely words from a prompt.
|
60 |
|
61 |
-
Args:
|
62 |
-
prompt: The text prompt to be cleaned.
|
63 |
|
64 |
-
|
65 |
-
|
66 |
-
"""
|
67 |
unlikely_words = []
|
68 |
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
|
|
77 |
|
78 |
-
|
79 |
"black and white,", "black and white", "black & white,", "black & white", "circa",
|
80 |
"balck and white,", "monochrome,", "black-and-white,", "black-and-white photography,",
|
81 |
"black - and - white photography,", "monochrome bw,", "black white,", "black an white,",
|
82 |
"grainy footage,", "grainy footage", "grainy photo,", "grainy photo", "b&w photo",
|
83 |
"back and white", "back and white,", "monochrome contrast", "monochrome", "grainy",
|
84 |
"grainy photograph,", "grainy photograph", "low contrast,", "low contrast", "b & w",
|
85 |
-
"grainy black-and-white photo,", "bw", "bw,",
|
86 |
"b & w,", "b&w,", "b&w!,", "b&w", "black - and - white,", "bw photo,", "grainy photo,",
|
87 |
"black-and-white photo,", "black-and-white photo", "black - and - white photography",
|
88 |
"b&w photo,", "monochromatic photo,", "grainy monochrome photo,", "monochromatic",
|
@@ -94,287 +113,85 @@ def remove_unlikely_words(prompt: str) -> str:
|
|
94 |
"historical photo", "historical setting,",
|
95 |
"historic photo,", "historic", "desaturated!!,", "desaturated!,", "desaturated,", "desaturated",
|
96 |
"taken in", "shot on leica", "shot on leica sl2", "sl2",
|
97 |
-
"taken with a leica camera", "
|
98 |
"overcast day", "overcast weather", "slight overcast", "overcast",
|
99 |
"picture taken in", "photo taken in",
|
100 |
", photo", ", photo", ", photo", ", photo", ", photograph",
|
101 |
",,", ",,,", ",,,,", " ,", " ,", " ,", " ,",
|
102 |
]
|
103 |
|
104 |
-
unlikely_words.extend(
|
105 |
-
|
106 |
-
unlikely_words.extend(a3_list)
|
107 |
-
unlikely_words.extend(a4_list)
|
108 |
-
unlikely_words.extend(b1_list)
|
109 |
-
unlikely_words.extend(b2_list)
|
110 |
-
unlikely_words.extend(b3_list)
|
111 |
-
unlikely_words.extend(b4_list)
|
112 |
-
unlikely_words.extend(words_list)
|
113 |
-
|
114 |
for word in unlikely_words:
|
115 |
prompt = prompt.replace(word, "")
|
116 |
return prompt
|
117 |
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
# https://huggingface.co/Salesforce/blip-image-captioning-base
|
125 |
-
if weight_dtype == torch.bfloat16: # in case model might not accept bfloat16 data type
|
126 |
-
weight_dtype = torch.float16
|
127 |
-
|
128 |
-
processor = BlipProcessor.from_pretrained(f"Salesforce/{model_backbone}")
|
129 |
-
model = BlipForConditionalGeneration.from_pretrained(
|
130 |
-
f"Salesforce/{model_backbone}", torch_dtype=weight_dtype).to(device)
|
131 |
-
|
132 |
-
valid_backbones = ["blip-image-captioning-large", "blip-image-captioning-base"]
|
133 |
-
if model_backbone not in valid_backbones:
|
134 |
-
raise ValueError(f"Invalid model backbone '{model_backbone}'. \
|
135 |
-
Valid options are: {', '.join(valid_backbones)}")
|
136 |
-
|
137 |
-
if conditional:
|
138 |
-
text = "a photography of"
|
139 |
-
inputs = processor(image, text, return_tensors="pt").to(device, weight_dtype)
|
140 |
-
else:
|
141 |
-
inputs = processor(image, return_tensors="pt").to(device)
|
142 |
-
out = model.generate(**inputs)
|
143 |
-
caption = processor.decode(out[0], skip_special_tokens=True)
|
144 |
-
return caption
|
145 |
-
|
146 |
-
# def vit_gpt2_image_captioning(image: PIL.Image.Image, device: str) -> str:
|
147 |
-
# # https://huggingface.co/nlpconnect/vit-gpt2-image-captioning
|
148 |
-
# model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning").to(device)
|
149 |
-
# feature_extractor = ViTImageProcessor.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
150 |
-
# tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
151 |
-
|
152 |
-
# max_length = 16
|
153 |
-
# num_beams = 4
|
154 |
-
# gen_kwargs = {"max_length": max_length, "num_beams": num_beams}
|
155 |
-
|
156 |
-
# pixel_values = feature_extractor(images=image, return_tensors="pt").pixel_values
|
157 |
-
# pixel_values = pixel_values.to(device)
|
158 |
-
|
159 |
-
# output_ids = model.generate(pixel_values, **gen_kwargs)
|
160 |
-
|
161 |
-
# preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
|
162 |
-
# caption = [pred.strip() for pred in preds]
|
163 |
-
|
164 |
-
# return caption[0]
|
165 |
-
|
166 |
-
# def clip_image_captioning(image: PIL.Image.Image,
|
167 |
-
# clip_model_name: str,
|
168 |
-
# device: str) -> str:
|
169 |
-
# # validate clip model name
|
170 |
-
# models = list_clip_models()
|
171 |
-
# if clip_model_name not in models:
|
172 |
-
# raise ValueError(f"Could not find CLIP model {clip_model_name}! \
|
173 |
-
# Available models: {models}")
|
174 |
-
# config = Config(device=device, clip_model_name=clip_model_name)
|
175 |
-
# config.apply_low_vram_defaults()
|
176 |
-
# ci = Interrogator(config)
|
177 |
-
# caption = ci.interrogate(image)
|
178 |
-
# return caption
|
179 |
-
|
180 |
-
# Define a function to process the image with the loaded model
|
181 |
@spaces.GPU
|
182 |
-
def process_image(image_path: str,
|
183 |
-
controlnet_model_name_or_path: str,
|
184 |
-
caption_model_name: str,
|
185 |
positive_prompt: Optional[str],
|
186 |
negative_prompt: Optional[str],
|
187 |
-
seed: int,
|
188 |
-
num_inference_steps: int,
|
189 |
-
mixed_precision: str,
|
190 |
-
pretrained_model_name_or_path: str,
|
191 |
-
pretrained_vae_model_name_or_path: Optional[str],
|
192 |
-
revision: Optional[str],
|
193 |
-
variant: Optional[str],
|
194 |
-
repo: str,
|
195 |
-
ckpt: str,) -> PIL.Image.Image:
|
196 |
-
# Seed
|
197 |
-
generator = torch.manual_seed(seed)
|
198 |
-
|
199 |
-
# Accelerator Setting
|
200 |
-
accelerator = Accelerator(
|
201 |
-
mixed_precision=mixed_precision,
|
202 |
-
cpu=False
|
203 |
-
)
|
204 |
-
|
205 |
-
print(f"Accelerator device: {accelerator.device}")
|
206 |
-
|
207 |
-
weight_dtype = torch.float32
|
208 |
-
if accelerator.mixed_precision == "fp16":
|
209 |
-
weight_dtype = torch.float16
|
210 |
-
elif accelerator.mixed_precision == "bf16":
|
211 |
-
weight_dtype = torch.bfloat16
|
212 |
-
|
213 |
-
vae_path = (
|
214 |
-
pretrained_model_name_or_path
|
215 |
-
if pretrained_vae_model_name_or_path is None
|
216 |
-
else pretrained_vae_model_name_or_path
|
217 |
-
)
|
218 |
-
vae = AutoencoderKL.from_pretrained(
|
219 |
-
vae_path,
|
220 |
-
subfolder="vae" if pretrained_vae_model_name_or_path is None else None,
|
221 |
-
revision=revision,
|
222 |
-
variant=variant,
|
223 |
-
)
|
224 |
-
unet = UNet2DConditionModel.from_config(
|
225 |
-
pretrained_model_name_or_path,
|
226 |
-
subfolder="unet",
|
227 |
-
revision=revision,
|
228 |
-
variant=variant,
|
229 |
-
)
|
230 |
-
unet.load_state_dict(load_file(hf_hub_download(repo, ckpt)))
|
231 |
-
|
232 |
-
# Move vae, unet and text_encoder to device and cast to weight_dtype
|
233 |
-
# The VAE is in float32 to avoid NaN losses.
|
234 |
-
if pretrained_vae_model_name_or_path is not None:
|
235 |
-
vae.to(accelerator.device, dtype=weight_dtype)
|
236 |
-
else:
|
237 |
-
vae.to(accelerator.device, dtype=torch.float32)
|
238 |
-
unet.to(accelerator.device, dtype=weight_dtype)
|
239 |
-
|
240 |
-
controlnet = ControlNetModel.from_pretrained(controlnet_model_name_or_path, torch_dtype=weight_dtype)
|
241 |
-
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
|
242 |
-
pretrained_model_name_or_path,
|
243 |
-
vae=vae,
|
244 |
-
unet=unet,
|
245 |
-
controlnet=controlnet,
|
246 |
-
)
|
247 |
-
pipe.to(accelerator.device, dtype=weight_dtype)
|
248 |
|
|
|
249 |
image = PIL.Image.open(image_path)
|
250 |
-
|
251 |
-
# Prepare everything with our `accelerator`.
|
252 |
-
pipe, image = accelerator.prepare(pipe, image)
|
253 |
-
pipe.safety_checker = None
|
254 |
-
|
255 |
-
# Convert image into grayscale
|
256 |
original_size = image.size
|
257 |
control_image = image.convert("L").convert("RGB").resize((512, 512))
|
258 |
-
|
259 |
# Image captioning
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
# caption = clip_image_captioning(control_image, caption_model_name, accelerator.device)
|
265 |
-
# elif caption_model_name == "vit-gpt2-image-captioning":
|
266 |
-
# caption = vit_gpt2_image_captioning(control_image, accelerator.device)
|
267 |
caption = remove_unlikely_words(caption)
|
268 |
|
269 |
-
#
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
# Define the image gallery based on folder path
|
285 |
-
def get_image_paths(folder_path):
|
286 |
-
import os
|
287 |
-
image_paths = []
|
288 |
-
for filename in os.listdir(folder_path):
|
289 |
-
if filename.endswith(".jpg") or filename.endswith(".png"):
|
290 |
-
image_paths.append([os.path.join(folder_path, filename)])
|
291 |
-
return image_paths
|
292 |
-
|
293 |
-
# Create the Gradio interface
|
294 |
def create_interface():
|
295 |
-
|
296 |
-
"sdxl-light-caption-30000": "sdxl_light_caption_output/checkpoint-30000/controlnet",
|
297 |
-
"sdxl-light-custom-caption-30000": "sdxl_light_custom_caption_output/checkpoint-30000/controlnet",
|
298 |
-
}
|
299 |
-
images = get_image_paths("example/legacy_images") # Replace with your folder path
|
300 |
|
301 |
-
|
302 |
fn=process_image,
|
303 |
inputs=[
|
304 |
-
gr.Image(label="Upload
|
305 |
-
value="example/legacy_images/Hollywood-Sign.jpg",
|
306 |
-
|
307 |
-
gr.
|
308 |
-
value=controlnet_model_dict["sdxl-light-caption-30000"],
|
309 |
-
label="Select ControlNet Model"),
|
310 |
-
gr.Dropdown(choices=["blip-image-captioning-large",
|
311 |
-
"blip-image-captioning-base",],
|
312 |
-
value="blip-image-captioning-large",
|
313 |
-
label="Select Image Captioning Model"),
|
314 |
-
gr.Textbox(label="Positive Prompt", placeholder="Text for positive prompt"),
|
315 |
-
gr.Textbox(value="low quality, bad quality, low contrast, black and white, bw, monochrome, grainy, blurry, historical, restored, desaturate",
|
316 |
-
label="Negative Prompt", placeholder="Text for negative prompt"),
|
317 |
],
|
318 |
outputs=[
|
319 |
-
gr.Image(label="Colorized
|
320 |
-
value="example/UUColor_results/Hollywood-Sign.jpeg",
|
321 |
-
|
322 |
-
gr.Textbox(label="Captioning Result", show_copy_button=True)
|
323 |
-
],
|
324 |
-
examples=images,
|
325 |
-
additional_inputs=[
|
326 |
-
# gr.Radio(choices=["Original", "Square"], value="Original",
|
327 |
-
# label="Output resolution"),
|
328 |
-
# gr.Slider(minimum=128, maximum=512, value=256, step=128,
|
329 |
-
# label="Height & Width",
|
330 |
-
# info='Only effect if select "Square" output resolution'),
|
331 |
-
gr.Slider(0, 1000, 123, label="Seed"),
|
332 |
-
gr.Radio(choices=[1, 2, 4, 8],
|
333 |
-
value=8,
|
334 |
-
label="Inference Steps",
|
335 |
-
info="1-step, 2-step, 4-step, or 8-step distilled models"),
|
336 |
-
gr.Radio(choices=["no", "fp16", "bf16"],
|
337 |
-
value="fp16",
|
338 |
-
label="Mixed Precision",
|
339 |
-
info="Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16)."),
|
340 |
-
gr.Dropdown(choices=["stabilityai/stable-diffusion-xl-base-1.0"],
|
341 |
-
value="stabilityai/stable-diffusion-xl-base-1.0",
|
342 |
-
label="Base Model",
|
343 |
-
info="Path to pretrained model or model identifier from huggingface.co/models."),
|
344 |
-
gr.Dropdown(choices=["None"],
|
345 |
-
value=None,
|
346 |
-
label="VAE Model",
|
347 |
-
info="Path to an improved VAE to stabilize training. For more details check out: https://github.com/huggingface/diffusers/pull/4038."),
|
348 |
-
gr.Dropdown(choices=["None"],
|
349 |
-
value=None,
|
350 |
-
label="Varient",
|
351 |
-
info="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16"),
|
352 |
-
gr.Dropdown(choices=["None"],
|
353 |
-
value=None,
|
354 |
-
label="Revision",
|
355 |
-
info="Revision of pretrained model identifier from huggingface.co/models."),
|
356 |
-
gr.Dropdown(choices=["ByteDance/SDXL-Lightning"],
|
357 |
-
value="ByteDance/SDXL-Lightning",
|
358 |
-
label="Repository",
|
359 |
-
info="Repository from huggingface.co"),
|
360 |
-
gr.Dropdown(choices=["sdxl_lightning_1step_unet.safetensors",
|
361 |
-
"sdxl_lightning_2step_unet.safetensors",
|
362 |
-
"sdxl_lightning_4step_unet.safetensors",
|
363 |
-
"sdxl_lightning_8step_unet.safetensors"],
|
364 |
-
value="sdxl_lightning_8step_unet.safetensors",
|
365 |
-
label="Checkpoint",
|
366 |
-
info="Available checkpoints from the repository. Caution! Checkpoint's 'N'step must match with inference steps"),
|
367 |
],
|
|
|
|
|
368 |
title="Text-Guided Image Colorization",
|
369 |
-
description="Upload
|
370 |
cache_examples=False
|
371 |
)
|
372 |
-
|
373 |
|
374 |
def main():
|
375 |
-
# Launch the Gradio interface
|
376 |
interface = create_interface()
|
377 |
interface.launch(ssr_mode=False)
|
378 |
|
|
|
379 |
if __name__ == "__main__":
|
380 |
-
|
|
|
1 |
+
import os
|
|
|
2 |
import torch
|
3 |
+
import PIL
|
4 |
import gradio as gr
|
|
|
5 |
|
6 |
from typing import Optional
|
7 |
from accelerate import Accelerator
|
8 |
from diffusers import (
|
9 |
AutoencoderKL,
|
10 |
+
StableDiffusionXLControlNetPipeline,
|
11 |
ControlNetModel,
|
12 |
UNet2DConditionModel,
|
13 |
)
|
14 |
from transformers import (
|
15 |
+
BlipProcessor, BlipForConditionalGeneration,
|
|
|
16 |
)
|
|
|
17 |
from safetensors.torch import load_file
|
18 |
+
from huggingface_hub import hf_hub_download, snapshot_download
|
19 |
|
20 |
+
import spaces
|
21 |
|
22 |
+
|
23 |
+
# ========== Initialization ==========
|
24 |
+
|
25 |
+
# Ensure required directories exist
|
26 |
os.makedirs("sdxl_light_caption_output", exist_ok=True)
|
|
|
27 |
|
28 |
+
# Download controlnet model snapshot
|
29 |
snapshot_download(
|
30 |
+
repo_id='nickpai/sdxl_light_caption_output',
|
31 |
+
local_dir='sdxl_light_caption_output'
|
32 |
)
|
33 |
|
34 |
+
# Device and precision setup
|
35 |
+
accelerator = Accelerator(mixed_precision="fp16")
|
36 |
+
weight_dtype = torch.float16 if accelerator.mixed_precision == "fp16" else torch.float32
|
37 |
+
device = accelerator.device
|
38 |
+
|
39 |
+
print(f"[INFO] Accelerator device: {device}")
|
40 |
+
|
41 |
+
# ========== Models ==========
|
42 |
+
|
43 |
+
# Pretrained paths
|
44 |
+
base_model_path = "stabilityai/stable-diffusion-xl-base-1.0"
|
45 |
+
safetensors_ckpt = "sdxl_lightning_8step_unet.safetensors"
|
46 |
+
controlnet_path = "sdxl_light_caption_output/checkpoint-30000/controlnet"
|
47 |
+
|
48 |
+
# Load diffusion components
|
49 |
+
vae = AutoencoderKL.from_pretrained(base_model_path, subfolder="vae")
|
50 |
+
unet = UNet2DConditionModel.from_config(base_model_path, subfolder="unet")
|
51 |
+
unet.load_state_dict(load_file(hf_hub_download("ByteDance/SDXL-Lightning", safetensors_ckpt)))
|
52 |
+
|
53 |
+
controlnet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=weight_dtype)
|
54 |
+
|
55 |
+
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
|
56 |
+
base_model_path, vae=vae, unet=unet, controlnet=controlnet
|
57 |
)
|
58 |
+
pipe.to(device, dtype=weight_dtype)
|
59 |
+
pipe.safety_checker = None
|
60 |
+
|
61 |
+
# Load BLIP captioning model
|
62 |
+
caption_model_name = "blip-image-captioning-large"
|
63 |
+
processor = BlipProcessor.from_pretrained(f"Salesforce/{caption_model_name}")
|
64 |
+
caption_model = BlipForConditionalGeneration.from_pretrained(
|
65 |
+
f"Salesforce/{caption_model_name}", torch_dtype=weight_dtype
|
66 |
+
).to(device)
|
67 |
|
68 |
+
# ========== Utility Functions ==========
|
69 |
|
70 |
def apply_color(image: PIL.Image.Image, color_map: PIL.Image.Image) -> PIL.Image.Image:
|
71 |
+
# Convert to LAB color space
|
72 |
image_lab = image.convert('LAB')
|
73 |
color_map_lab = color_map.convert('LAB')
|
74 |
|
75 |
+
# Extract and merge LAB channels
|
76 |
+
l, _, _ = image_lab.split()
|
77 |
_, a_map, b_map = color_map_lab.split()
|
|
|
|
|
78 |
merged_lab = PIL.Image.merge('LAB', (l, a_map, b_map))
|
79 |
|
80 |
+
return merged_lab.convert('RGB')
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
|
|
|
|
82 |
|
83 |
+
def remove_unlikely_words(prompt: str) -> str:
|
84 |
+
"""Removes predefined unlikely phrases from prompt text."""
|
|
|
85 |
unlikely_words = []
|
86 |
|
87 |
+
a1 = [f'{i}s' for i in range(1900, 2000)]
|
88 |
+
a2 = [f'{i}' for i in range(1900, 2000)]
|
89 |
+
a3 = [f'year {i}' for i in range(1900, 2000)]
|
90 |
+
a4 = [f'circa {i}' for i in range(1900, 2000)]
|
91 |
+
|
92 |
+
b1 = [f"{y[0]} {y[1]} {y[2]} {y[3]} s" for y in a1]
|
93 |
+
b2 = [f"{y[0]} {y[1]} {y[2]} {y[3]}" for y in a1]
|
94 |
+
b3 = [f"year {y[0]} {y[1]} {y[2]} {y[3]}" for y in a1]
|
95 |
+
b4 = [f"circa {y[0]} {y[1]} {y[2]} {y[3]}" for y in a1]
|
96 |
|
97 |
+
manual = [ # same list as your original words_list
|
98 |
"black and white,", "black and white", "black & white,", "black & white", "circa",
|
99 |
"balck and white,", "monochrome,", "black-and-white,", "black-and-white photography,",
|
100 |
"black - and - white photography,", "monochrome bw,", "black white,", "black an white,",
|
101 |
"grainy footage,", "grainy footage", "grainy photo,", "grainy photo", "b&w photo",
|
102 |
"back and white", "back and white,", "monochrome contrast", "monochrome", "grainy",
|
103 |
"grainy photograph,", "grainy photograph", "low contrast,", "low contrast", "b & w",
|
104 |
+
"grainy black-and-white photo,", "bw", "bw,", "grainy black-and-white photo",
|
105 |
"b & w,", "b&w,", "b&w!,", "b&w", "black - and - white,", "bw photo,", "grainy photo,",
|
106 |
"black-and-white photo,", "black-and-white photo", "black - and - white photography",
|
107 |
"b&w photo,", "monochromatic photo,", "grainy monochrome photo,", "monochromatic",
|
|
|
113 |
"historical photo", "historical setting,",
|
114 |
"historic photo,", "historic", "desaturated!!,", "desaturated!,", "desaturated,", "desaturated",
|
115 |
"taken in", "shot on leica", "shot on leica sl2", "sl2",
|
116 |
+
"taken with a leica camera", "leica sl2", "leica", "setting",
|
117 |
"overcast day", "overcast weather", "slight overcast", "overcast",
|
118 |
"picture taken in", "photo taken in",
|
119 |
", photo", ", photo", ", photo", ", photo", ", photograph",
|
120 |
",,", ",,,", ",,,,", " ,", " ,", " ,", " ,",
|
121 |
]
|
122 |
|
123 |
+
unlikely_words.extend(a1 + a2 + a3 + a4 + b1 + b2 + b3 + b4 + manual)
|
124 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
for word in unlikely_words:
|
126 |
prompt = prompt.replace(word, "")
|
127 |
return prompt
|
128 |
|
129 |
+
|
130 |
+
def get_image_paths(folder_path: str) -> list:
|
131 |
+
return [[os.path.join(folder_path, f)] for f in os.listdir(folder_path)
|
132 |
+
if f.lower().endswith((".jpg", ".png"))]
|
133 |
+
|
134 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
@spaces.GPU
|
136 |
+
def process_image(image_path: str,
|
|
|
|
|
137 |
positive_prompt: Optional[str],
|
138 |
negative_prompt: Optional[str],
|
139 |
+
seed: int) -> tuple[PIL.Image.Image, str]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
|
141 |
+
torch.manual_seed(seed)
|
142 |
image = PIL.Image.open(image_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
original_size = image.size
|
144 |
control_image = image.convert("L").convert("RGB").resize((512, 512))
|
145 |
+
|
146 |
# Image captioning
|
147 |
+
input_text = "a photography of"
|
148 |
+
inputs = processor(image, input_text, return_tensors="pt").to(device, dtype=weight_dtype)
|
149 |
+
caption_ids = caption_model.generate(**inputs)
|
150 |
+
caption = processor.decode(caption_ids[0], skip_special_tokens=True)
|
|
|
|
|
|
|
151 |
caption = remove_unlikely_words(caption)
|
152 |
|
153 |
+
# Inference
|
154 |
+
final_prompt = [f"{positive_prompt}, {caption}"]
|
155 |
+
result = pipe(prompt=final_prompt,
|
156 |
+
negative_prompt=negative_prompt,
|
157 |
+
num_inference_steps=8,
|
158 |
+
generator=torch.manual_seed(seed),
|
159 |
+
image=control_image)
|
160 |
+
|
161 |
+
colorized = apply_color(control_image, result.images[0]).resize(original_size)
|
162 |
+
return colorized, caption
|
163 |
+
|
164 |
+
|
165 |
+
# ========== Gradio UI ==========
|
166 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
def create_interface():
|
168 |
+
examples = get_image_paths("example/legacy_images")
|
|
|
|
|
|
|
|
|
169 |
|
170 |
+
return gr.Interface(
|
171 |
fn=process_image,
|
172 |
inputs=[
|
173 |
+
gr.Image(label="Upload Image", type='filepath',
|
174 |
+
value="example/legacy_images/Hollywood-Sign.jpg"),
|
175 |
+
gr.Textbox(label="Positive Prompt", placeholder="Enter details to enhance the caption"),
|
176 |
+
gr.Textbox(label="Negative Prompt", value="low quality, bad quality, low contrast, black and white, bw, monochrome, grainy, blurry, historical, restored, desaturate"),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
177 |
],
|
178 |
outputs=[
|
179 |
+
gr.Image(label="Colorized Image", format="jpeg",
|
180 |
+
value="example/UUColor_results/Hollywood-Sign.jpeg"),
|
181 |
+
gr.Textbox(label="Caption", show_copy_button=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
182 |
],
|
183 |
+
examples=examples,
|
184 |
+
additional_inputs=[gr.Slider(0, 1000, 123, label="Seed")],
|
185 |
title="Text-Guided Image Colorization",
|
186 |
+
description="Upload a grayscale image and generate a color version guided by automatic captioning.",
|
187 |
cache_examples=False
|
188 |
)
|
189 |
+
|
190 |
|
191 |
def main():
|
|
|
192 |
interface = create_interface()
|
193 |
interface.launch(ssr_mode=False)
|
194 |
|
195 |
+
|
196 |
if __name__ == "__main__":
|
197 |
+
main()
|