Spaces:
Runtime error
Runtime error
import gradio as gr | |
from PIL import Image | |
from io import BytesIO | |
import torch | |
import os | |
from diffusers import DiffusionPipeline, DDIMScheduler | |
MY_SECRET_TOKEN=os.environ.get('HF_TOKEN_SD') | |
has_cuda = torch.cuda.is_available() | |
device = torch.device('cpu' if not has_cuda else 'cuda') | |
pipe = DiffusionPipeline.from_pretrained( | |
"CompVis/stable-diffusion-v1-4", | |
safety_checker=None, | |
use_auth_token=MY_SECRET_TOKEN, | |
custom_pipeline="imagic_stable_diffusion", | |
scheduler = DDIMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False) | |
).to(device) | |
#generator = torch.Generator("cuda").manual_seed(0) | |
def infer(prompt, init_image): | |
res = pipe.train( | |
prompt, | |
init_image, | |
guidance_scale=7.5, | |
num_inference_steps=50) | |
res = pipe(alpha=1) | |
return res.images[0] | |
title = """ | |
<div style="text-align: center; max-width: 650px; margin: 0 auto;"> | |
<div | |
style=" | |
display: inline-flex; | |
align-items: center; | |
gap: 0.8rem; | |
font-size: 1.75rem; | |
" | |
> | |
<h1 style="font-weight: 900; margin-bottom: 7px;"> | |
Imagic Stable Diffusion • Community Pipeline | |
</h1> | |
</div> | |
<p style="margin-bottom: 10px; font-size: 94%"> | |
Text-Based Real Image Editing with Diffusion Models | |
</p> | |
</div> | |
""" | |
article = """ | |
""" | |
css = ''' | |
#col-container {max-width: 700px; margin-left: auto; margin-right: auto;} | |
a {text-decoration-line: underline; font-weight: 600;} | |
''' | |
prompt_input = gr.Textbox() | |
image_init = gr.Image(source="upload", type="filepath") | |
image_output = gr.Image() | |
demo = gr.Interface(fn=infer, inputs=[prompt_input, image_init], outputs=image_output, title=title) | |
demo.launch() | |
with gr.Blocks(css=css) as block: | |
with gr.Column(elem_id="col-container"): | |
gr.HTML(title) | |
prompt_input = gr.Textbox() | |
image_init = gr.Image(source="upload", type="filepath") | |
submit_btn = gr.Button("Submit") | |
image_output = gr.Image() | |
#gr.HTML(article) | |
submit_btn.click(fn=infer, inputs=[prompt_input,image_init], outputs=[image_output]) | |
block.queue(max_size=32,concurrency_count=20).launch(show_api=False) |