Spaces:
Runtime error
Runtime error
import gradio as gr | |
from PIL import Image | |
from io import BytesIO | |
import torch | |
import os | |
os.system("pip install git+https://github.com/fffiloni/diffusers") | |
from diffusers import DiffusionPipeline, DDIMScheduler, UNet2DConditionModel | |
MY_SECRET_TOKEN=os.environ.get('HF_TOKEN_SD') | |
has_cuda = torch.cuda.is_available() | |
device = "cuda" | |
pipe = DiffusionPipeline.from_pretrained( | |
"CompVis/stable-diffusion-v1-4", | |
safety_checker=None, | |
custom_pipeline="imagic_stable_diffusion", | |
scheduler = DDIMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False) | |
).to(device) | |
generator = torch.Generator("cuda").manual_seed(0) | |
def infer(prompt, init_image): | |
init_image = Image.open(init_image).convert("RGB") | |
init_image = init_image.resize((128, 128)) | |
res = pipe.train( | |
prompt, | |
init_image, | |
guidance_scale=7.5, | |
num_inference_steps=50, | |
generator=generator, | |
text_embedding_optimization_steps=100, | |
model_fine_tuning_optimization_steps=500) | |
#with torch.no_grad(): | |
# torch.cuda.empty_cache() | |
#res = pipe(alpha=1) | |
#return res.images[0] | |
return 'trained success' | |
title = """ | |
<div style="text-align: center; max-width: 650px; margin: 0 auto;"> | |
<div | |
style=" | |
display: inline-flex; | |
align-items: center; | |
gap: 0.8rem; | |
font-size: 1.75rem; | |
" | |
> | |
<h1 style="font-weight: 900; margin-top: 7px;"> | |
Imagic Stable Diffusion • Community Pipeline | |
</h1> | |
</div> | |
<p style="margin-top: 10px; font-size: 94%"> | |
Text-Based Real Image Editing with Diffusion Models | |
<br />This pipeline aims to implement <a href="https://arxiv.org/abs/2210.09276" target="_blank">this paper</a> to Stable Diffusion, allowing for real-world image editing. | |
</p> | |
<br /><img src="https://user-images.githubusercontent.com/788417/196388568-4ee45edd-e990-452c-899f-c25af32939be.png" style="margin:7px 0 20px;"/> | |
<p style="font-size: 94%"> | |
You can skip the queue by duplicating this space: | |
<a style="display: flex;align-items: center;justify-content: center;height: 30px;" href="https://huggingface.co/spaces/fffiloni/imagic-stable-diffusion?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a> | |
</p> | |
</div> | |
""" | |
article = """ | |
<div class="footer"> | |
<p><a href="https://github.com/huggingface/diffusers/tree/main/examples/community#imagic-stable-diffusion" target="_blank">Community pipeline</a> | |
baked by <a href="https://github.com/MarkRich" style="text-decoration: underline;" target="_blank">Mark Rich</a> - | |
Gradio Demo by 🤗 <a href="https://twitter.com/fffiloni" target="_blank">Sylvain Filoni</a> | |
</p> | |
</div> | |
""" | |
css = ''' | |
#col-container {max-width: 700px; margin-left: auto; margin-right: auto;} | |
a {text-decoration-line: underline; font-weight: 600;} | |
.footer { | |
margin-bottom: 45px; | |
margin-top: 35px; | |
text-align: center; | |
border-bottom: 1px solid #e5e5e5; | |
} | |
.footer>p { | |
font-size: .8rem; | |
display: inline-block; | |
padding: 0 10px; | |
transform: translateY(10px); | |
background: white; | |
} | |
.dark .footer { | |
border-color: #303030; | |
} | |
.dark .footer>p { | |
background: #0b0f19; | |
} | |
''' | |
with gr.Blocks(css=css) as block: | |
with gr.Column(elem_id="col-container"): | |
gr.HTML(title) | |
prompt_input = gr.Textbox(label="Target text", placeholder="Describe the image with what you want to change about the subject") | |
image_init = gr.Image(source="upload", type="filepath",label="Input Image") | |
submit_btn = gr.Button("Train") | |
image_output = gr.Image(label="Edited image") | |
text_output = gr.Image(label="trained status") | |
gr.HTML(article) | |
submit_btn.click(fn=infer, inputs=[prompt_input,image_init], outputs=[text_output]) | |
block.queue(max_size=12).launch(show_api=False) |