Spaces:
Runtime error
Runtime error
track tqdm in main function too
Browse files
app.py
CHANGED
@@ -301,9 +301,9 @@ def infer(video_in, trim_value, prompt, background_prompt, progress=gr.Progress(
|
|
301 |
print(prompt)
|
302 |
break_vid = get_frames(video_in)
|
303 |
|
304 |
-
frames_list= break_vid[0]
|
305 |
fps = break_vid[1]
|
306 |
-
n_frame = int(trim_value*fps)
|
307 |
|
308 |
if n_frame >= len(frames_list):
|
309 |
print("video is shorter than the cut value")
|
@@ -313,36 +313,36 @@ def infer(video_in, trim_value, prompt, background_prompt, progress=gr.Progress(
|
|
313 |
with_green_result_frames = []
|
314 |
with_matte_result_frames = []
|
315 |
|
316 |
-
print("set stop frames to:
|
317 |
bg_already = False
|
318 |
-
|
|
|
|
|
319 |
to_numpy_i = Image.open(i).convert("RGB")
|
320 |
-
#need to convert to numpy
|
321 |
-
# Convert the image to a NumPy array
|
322 |
image_array = np.array(to_numpy_i)
|
323 |
|
324 |
results = run_grounded_sam(image_array, prompt, "text", background_prompt, bg_already)
|
325 |
bg_already = True
|
|
|
326 |
bg_img = Image.fromarray(results[0])
|
327 |
green_img = Image.fromarray(results[1])
|
328 |
matte_img = Image.fromarray(results[2])
|
329 |
|
330 |
-
|
331 |
# exporting the images
|
332 |
bg_img.save(f"bg_result_img-{i}.jpg")
|
333 |
with_bg_result_frames.append(f"bg_result_img-{i}.jpg")
|
|
|
334 |
green_img.save(f"green_result_img-{i}.jpg")
|
335 |
with_green_result_frames.append(f"green_result_img-{i}.jpg")
|
|
|
336 |
matte_img.save(f"matte_result_img-{i}.jpg")
|
337 |
with_matte_result_frames.append(f"matte_result_img-{i}.jpg")
|
338 |
-
print("frame " + i + "/" + str(n_frame) + ": done;")
|
339 |
|
340 |
vid_bg = create_video(with_bg_result_frames, fps, "bg")
|
341 |
vid_green = create_video(with_green_result_frames, fps, "greenscreen")
|
342 |
vid_matte = create_video(with_matte_result_frames, fps, "matte")
|
343 |
|
344 |
-
|
345 |
-
print("finished !")
|
346 |
|
347 |
return vid_bg, vid_green, vid_matte
|
348 |
|
|
|
301 |
print(prompt)
|
302 |
break_vid = get_frames(video_in)
|
303 |
|
304 |
+
frames_list = break_vid[0]
|
305 |
fps = break_vid[1]
|
306 |
+
n_frame = int(trim_value * fps)
|
307 |
|
308 |
if n_frame >= len(frames_list):
|
309 |
print("video is shorter than the cut value")
|
|
|
313 |
with_green_result_frames = []
|
314 |
with_matte_result_frames = []
|
315 |
|
316 |
+
print("set stop frames to:", n_frame)
|
317 |
bg_already = False
|
318 |
+
|
319 |
+
# tqdm hooked into gr.Progress
|
320 |
+
for i in tqdm(frames_list[:n_frame], desc="Inferring frames", unit="frame"):
|
321 |
to_numpy_i = Image.open(i).convert("RGB")
|
|
|
|
|
322 |
image_array = np.array(to_numpy_i)
|
323 |
|
324 |
results = run_grounded_sam(image_array, prompt, "text", background_prompt, bg_already)
|
325 |
bg_already = True
|
326 |
+
|
327 |
bg_img = Image.fromarray(results[0])
|
328 |
green_img = Image.fromarray(results[1])
|
329 |
matte_img = Image.fromarray(results[2])
|
330 |
|
|
|
331 |
# exporting the images
|
332 |
bg_img.save(f"bg_result_img-{i}.jpg")
|
333 |
with_bg_result_frames.append(f"bg_result_img-{i}.jpg")
|
334 |
+
|
335 |
green_img.save(f"green_result_img-{i}.jpg")
|
336 |
with_green_result_frames.append(f"green_result_img-{i}.jpg")
|
337 |
+
|
338 |
matte_img.save(f"matte_result_img-{i}.jpg")
|
339 |
with_matte_result_frames.append(f"matte_result_img-{i}.jpg")
|
|
|
340 |
|
341 |
vid_bg = create_video(with_bg_result_frames, fps, "bg")
|
342 |
vid_green = create_video(with_green_result_frames, fps, "greenscreen")
|
343 |
vid_matte = create_video(with_matte_result_frames, fps, "matte")
|
344 |
|
345 |
+
print("finished!")
|
|
|
346 |
|
347 |
return vid_bg, vid_green, vid_matte
|
348 |
|