Spaces:
Sleeping
Sleeping
# -*- coding: utf-8 -*- | |
# Copyright (c) Alibaba, Inc. and its affiliates. | |
import argparse | |
import time | |
from datetime import datetime | |
import logging | |
import os | |
import sys | |
import warnings | |
warnings.filterwarnings('ignore') | |
import torch, random | |
import torch.distributed as dist | |
from PIL import Image | |
import wan | |
from wan.utils.utils import cache_video, cache_image, str2bool | |
from models.wan import WanVace | |
from models.wan.configs import WAN_CONFIGS, SIZE_CONFIGS, MAX_AREA_CONFIGS, SUPPORTED_SIZES | |
from annotators.utils import get_annotator | |
EXAMPLE_PROMPT = { | |
"vace-1.3B": { | |
"src_ref_images": 'assets/images/girl.png,assets/images/snake.png', | |
"prompt": "在一个欢乐而充满节日气氛的场景中,穿着鲜艳红色春服的小女孩正与她的可爱卡通蛇嬉戏。她的春服上绣着金色吉祥图案,散发着喜庆的气息,脸上洋溢着灿烂的笑容。蛇身呈现出亮眼的绿色,形状圆润,宽大的眼睛让它显得既友善又幽默。小女孩欢快地用手轻轻抚摸着蛇的头部,共同享受着这温馨的时刻。周围五彩斑斓的灯笼和彩带装饰着环境,阳光透过洒在她们身上,营造出一个充满友爱与幸福的新年氛围。" | |
}, | |
"vace-14B": { | |
"src_ref_images": 'assets/images/girl.png,assets/images/snake.png', | |
"prompt": "在一个欢乐而充满节日气氛的场景中,穿着鲜艳红色春服的小女孩正与她的可爱卡通蛇嬉戏。她的春服上绣着金色吉祥图案,散发着喜庆的气息,脸上洋溢着灿烂的笑容。蛇身呈现出亮眼的绿色,形状圆润,宽大的眼睛让它显得既友善又幽默。小女孩欢快地用手轻轻抚摸着蛇的头部,共同享受着这温馨的时刻。周围五彩斑斓的灯笼和彩带装饰着环境,阳光透过洒在她们身上,营造出一个充满友爱与幸福的新年氛围。" | |
} | |
} | |
def validate_args(args): | |
# Basic check | |
assert args.ckpt_dir is not None, "Please specify the checkpoint directory." | |
assert args.model_name in WAN_CONFIGS, f"Unsupport model name: {args.model_name}" | |
assert args.model_name in EXAMPLE_PROMPT, f"Unsupport model name: {args.model_name}" | |
# The default sampling steps are 40 for image-to-video tasks and 50 for text-to-video tasks. | |
if args.sample_steps is None: | |
args.sample_steps = 50 | |
if args.sample_shift is None: | |
args.sample_shift = 16 | |
# The default number of frames are 1 for text-to-image tasks and 81 for other tasks. | |
if args.frame_num is None: | |
args.frame_num = 81 | |
args.base_seed = args.base_seed if args.base_seed >= 0 else random.randint( | |
0, sys.maxsize) | |
# Size check | |
assert args.size in SUPPORTED_SIZES[ | |
args.model_name], f"Unsupport size {args.size} for model name {args.model_name}, supported sizes are: {', '.join(SUPPORTED_SIZES[args.model_name])}" | |
return args | |
def get_parser(): | |
parser = argparse.ArgumentParser( | |
description="Generate a image or video from a text prompt or image using Wan" | |
) | |
parser.add_argument( | |
"--model_name", | |
type=str, | |
default="vace-1.3B", | |
choices=list(WAN_CONFIGS.keys()), | |
help="The model name to run.") | |
parser.add_argument( | |
"--size", | |
type=str, | |
default="480p", | |
choices=list(SIZE_CONFIGS.keys()), | |
help="The area (width*height) of the generated video. For the I2V task, the aspect ratio of the output video will follow that of the input image." | |
) | |
parser.add_argument( | |
"--frame_num", | |
type=int, | |
default=81, | |
help="How many frames to sample from a image or video. The number should be 4n+1" | |
) | |
parser.add_argument( | |
"--ckpt_dir", | |
type=str, | |
default='models/Wan2.1-VACE-1.3B/', | |
help="The path to the checkpoint directory.") | |
parser.add_argument( | |
"--offload_model", | |
type=str2bool, | |
default=None, | |
help="Whether to offload the model to CPU after each model forward, reducing GPU memory usage." | |
) | |
parser.add_argument( | |
"--ulysses_size", | |
type=int, | |
default=1, | |
help="The size of the ulysses parallelism in DiT.") | |
parser.add_argument( | |
"--ring_size", | |
type=int, | |
default=1, | |
help="The size of the ring attention parallelism in DiT.") | |
parser.add_argument( | |
"--t5_fsdp", | |
action="store_true", | |
default=False, | |
help="Whether to use FSDP for T5.") | |
parser.add_argument( | |
"--t5_cpu", | |
action="store_true", | |
default=False, | |
help="Whether to place T5 model on CPU.") | |
parser.add_argument( | |
"--dit_fsdp", | |
action="store_true", | |
default=False, | |
help="Whether to use FSDP for DiT.") | |
parser.add_argument( | |
"--save_dir", | |
type=str, | |
default=None, | |
help="The file to save the generated image or video to.") | |
parser.add_argument( | |
"--save_file", | |
type=str, | |
default=None, | |
help="The file to save the generated image or video to.") | |
parser.add_argument( | |
"--src_video", | |
type=str, | |
default=None, | |
help="The file of the source video. Default None.") | |
parser.add_argument( | |
"--src_mask", | |
type=str, | |
default=None, | |
help="The file of the source mask. Default None.") | |
parser.add_argument( | |
"--src_ref_images", | |
type=str, | |
default=None, | |
help="The file list of the source reference images. Separated by ','. Default None.") | |
parser.add_argument( | |
"--prompt", | |
type=str, | |
default=None, | |
help="The prompt to generate the image or video from.") | |
parser.add_argument( | |
"--use_prompt_extend", | |
default='plain', | |
choices=['plain', 'wan_zh', 'wan_en', 'wan_zh_ds', 'wan_en_ds'], | |
help="Whether to use prompt extend.") | |
parser.add_argument( | |
"--base_seed", | |
type=int, | |
default=2025, | |
help="The seed to use for generating the image or video.") | |
parser.add_argument( | |
"--sample_solver", | |
type=str, | |
default='unipc', | |
choices=['unipc', 'dpm++'], | |
help="The solver used to sample.") | |
parser.add_argument( | |
"--sample_steps", type=int, default=None, help="The sampling steps.") | |
parser.add_argument( | |
"--sample_shift", | |
type=float, | |
default=None, | |
help="Sampling shift factor for flow matching schedulers.") | |
parser.add_argument( | |
"--sample_guide_scale", | |
type=float, | |
default=5.0, | |
help="Classifier free guidance scale.") | |
return parser | |
def _init_logging(rank): | |
# logging | |
if rank == 0: | |
# set format | |
logging.basicConfig( | |
level=logging.INFO, | |
format="[%(asctime)s] %(levelname)s: %(message)s", | |
handlers=[logging.StreamHandler(stream=sys.stdout)]) | |
else: | |
logging.basicConfig(level=logging.ERROR) | |
def main(args): | |
args = argparse.Namespace(**args) if isinstance(args, dict) else args | |
args = validate_args(args) | |
rank = int(os.getenv("RANK", 0)) | |
world_size = int(os.getenv("WORLD_SIZE", 1)) | |
local_rank = int(os.getenv("LOCAL_RANK", 0)) | |
device = local_rank | |
_init_logging(rank) | |
if args.offload_model is None: | |
args.offload_model = False if world_size > 1 else True | |
logging.info( | |
f"offload_model is not specified, set to {args.offload_model}.") | |
if world_size > 1: | |
torch.cuda.set_device(local_rank) | |
dist.init_process_group( | |
backend="nccl", | |
init_method="env://", | |
rank=rank, | |
world_size=world_size) | |
else: | |
assert not ( | |
args.t5_fsdp or args.dit_fsdp | |
), f"t5_fsdp and dit_fsdp are not supported in non-distributed environments." | |
assert not ( | |
args.ulysses_size > 1 or args.ring_size > 1 | |
), f"context parallel are not supported in non-distributed environments." | |
if args.ulysses_size > 1 or args.ring_size > 1: | |
assert args.ulysses_size * args.ring_size == world_size, f"The number of ulysses_size and ring_size should be equal to the world size." | |
from xfuser.core.distributed import (initialize_model_parallel, | |
init_distributed_environment) | |
init_distributed_environment( | |
rank=dist.get_rank(), world_size=dist.get_world_size()) | |
initialize_model_parallel( | |
sequence_parallel_degree=dist.get_world_size(), | |
ring_degree=args.ring_size, | |
ulysses_degree=args.ulysses_size, | |
) | |
if args.use_prompt_extend and args.use_prompt_extend != 'plain': | |
prompt_expander = get_annotator(config_type='prompt', config_task=args.use_prompt_extend, return_dict=False) | |
cfg = WAN_CONFIGS[args.model_name] | |
if args.ulysses_size > 1: | |
assert cfg.num_heads % args.ulysses_size == 0, f"`num_heads` must be divisible by `ulysses_size`." | |
logging.info(f"Generation job args: {args}") | |
logging.info(f"Generation model config: {cfg}") | |
if dist.is_initialized(): | |
base_seed = [args.base_seed] if rank == 0 else [None] | |
dist.broadcast_object_list(base_seed, src=0) | |
args.base_seed = base_seed[0] | |
if args.prompt is None: | |
args.prompt = EXAMPLE_PROMPT[args.model_name]["prompt"] | |
args.src_video = EXAMPLE_PROMPT[args.model_name].get("src_video", None) | |
args.src_mask = EXAMPLE_PROMPT[args.model_name].get("src_mask", None) | |
args.src_ref_images = EXAMPLE_PROMPT[args.model_name].get("src_ref_images", None) | |
logging.info(f"Input prompt: {args.prompt}") | |
if args.use_prompt_extend and args.use_prompt_extend != 'plain': | |
logging.info("Extending prompt ...") | |
if rank == 0: | |
prompt = prompt_expander.forward(args.prompt) | |
logging.info(f"Prompt extended from '{args.prompt}' to '{prompt}'") | |
input_prompt = [prompt] | |
else: | |
input_prompt = [None] | |
if dist.is_initialized(): | |
dist.broadcast_object_list(input_prompt, src=0) | |
args.prompt = input_prompt[0] | |
logging.info(f"Extended prompt: {args.prompt}") | |
logging.info("Creating WanT2V pipeline.") | |
wan_vace = WanVace( | |
config=cfg, | |
checkpoint_dir=args.ckpt_dir, | |
device_id=device, | |
rank=rank, | |
t5_fsdp=args.t5_fsdp, | |
dit_fsdp=args.dit_fsdp, | |
use_usp=(args.ulysses_size > 1 or args.ring_size > 1), | |
t5_cpu=args.t5_cpu, | |
) | |
src_video, src_mask, src_ref_images = wan_vace.prepare_source([args.src_video], | |
[args.src_mask], | |
[None if args.src_ref_images is None else args.src_ref_images.split(',')], | |
args.frame_num, SIZE_CONFIGS[args.size], device) | |
logging.info(f"Generating video...") | |
video = wan_vace.generate( | |
args.prompt, | |
src_video, | |
src_mask, | |
src_ref_images, | |
size=SIZE_CONFIGS[args.size], | |
frame_num=args.frame_num, | |
shift=args.sample_shift, | |
sample_solver=args.sample_solver, | |
sampling_steps=args.sample_steps, | |
guide_scale=args.sample_guide_scale, | |
seed=args.base_seed, | |
offload_model=args.offload_model) | |
ret_data = {} | |
if rank == 0: | |
if args.save_dir is None: | |
save_dir = os.path.join('results', args.model_name, time.strftime('%Y-%m-%d-%H-%M-%S', time.localtime(time.time()))) | |
else: | |
save_dir = args.save_dir | |
if not os.path.exists(save_dir): | |
os.makedirs(save_dir) | |
if args.save_file is not None: | |
save_file = args.save_file | |
else: | |
save_file = os.path.join(save_dir, 'out_video.mp4') | |
cache_video( | |
tensor=video[None], | |
save_file=save_file, | |
fps=cfg.sample_fps, | |
nrow=1, | |
normalize=True, | |
value_range=(-1, 1)) | |
logging.info(f"Saving generated video to {save_file}") | |
ret_data['out_video'] = save_file | |
save_file = os.path.join(save_dir, 'src_video.mp4') | |
cache_video( | |
tensor=src_video[0][None], | |
save_file=save_file, | |
fps=cfg.sample_fps, | |
nrow=1, | |
normalize=True, | |
value_range=(-1, 1)) | |
logging.info(f"Saving src_video to {save_file}") | |
ret_data['src_video'] = save_file | |
save_file = os.path.join(save_dir, 'src_mask.mp4') | |
cache_video( | |
tensor=src_mask[0][None], | |
save_file=save_file, | |
fps=cfg.sample_fps, | |
nrow=1, | |
normalize=True, | |
value_range=(0, 1)) | |
logging.info(f"Saving src_mask to {save_file}") | |
ret_data['src_mask'] = save_file | |
if src_ref_images[0] is not None: | |
for i, ref_img in enumerate(src_ref_images[0]): | |
save_file = os.path.join(save_dir, f'src_ref_image_{i}.png') | |
cache_image( | |
tensor=ref_img[:, 0, ...], | |
save_file=save_file, | |
nrow=1, | |
normalize=True, | |
value_range=(-1, 1)) | |
logging.info(f"Saving src_ref_image_{i} to {save_file}") | |
ret_data[f'src_ref_image_{i}'] = save_file | |
logging.info("Finished.") | |
return ret_data | |
if __name__ == "__main__": | |
args = get_parser().parse_args() | |
main(args) | |