VACE-Annotators / vace /vace_wan_inference.py
fffiloni's picture
Migrated from GitHub
c7de15e verified
# -*- coding: utf-8 -*-
# Copyright (c) Alibaba, Inc. and its affiliates.
import argparse
import time
from datetime import datetime
import logging
import os
import sys
import warnings
warnings.filterwarnings('ignore')
import torch, random
import torch.distributed as dist
from PIL import Image
import wan
from wan.utils.utils import cache_video, cache_image, str2bool
from models.wan import WanVace
from models.wan.configs import WAN_CONFIGS, SIZE_CONFIGS, MAX_AREA_CONFIGS, SUPPORTED_SIZES
from annotators.utils import get_annotator
EXAMPLE_PROMPT = {
"vace-1.3B": {
"src_ref_images": 'assets/images/girl.png,assets/images/snake.png',
"prompt": "在一个欢乐而充满节日气氛的场景中,穿着鲜艳红色春服的小女孩正与她的可爱卡通蛇嬉戏。她的春服上绣着金色吉祥图案,散发着喜庆的气息,脸上洋溢着灿烂的笑容。蛇身呈现出亮眼的绿色,形状圆润,宽大的眼睛让它显得既友善又幽默。小女孩欢快地用手轻轻抚摸着蛇的头部,共同享受着这温馨的时刻。周围五彩斑斓的灯笼和彩带装饰着环境,阳光透过洒在她们身上,营造出一个充满友爱与幸福的新年氛围。"
},
"vace-14B": {
"src_ref_images": 'assets/images/girl.png,assets/images/snake.png',
"prompt": "在一个欢乐而充满节日气氛的场景中,穿着鲜艳红色春服的小女孩正与她的可爱卡通蛇嬉戏。她的春服上绣着金色吉祥图案,散发着喜庆的气息,脸上洋溢着灿烂的笑容。蛇身呈现出亮眼的绿色,形状圆润,宽大的眼睛让它显得既友善又幽默。小女孩欢快地用手轻轻抚摸着蛇的头部,共同享受着这温馨的时刻。周围五彩斑斓的灯笼和彩带装饰着环境,阳光透过洒在她们身上,营造出一个充满友爱与幸福的新年氛围。"
}
}
def validate_args(args):
# Basic check
assert args.ckpt_dir is not None, "Please specify the checkpoint directory."
assert args.model_name in WAN_CONFIGS, f"Unsupport model name: {args.model_name}"
assert args.model_name in EXAMPLE_PROMPT, f"Unsupport model name: {args.model_name}"
# The default sampling steps are 40 for image-to-video tasks and 50 for text-to-video tasks.
if args.sample_steps is None:
args.sample_steps = 50
if args.sample_shift is None:
args.sample_shift = 16
# The default number of frames are 1 for text-to-image tasks and 81 for other tasks.
if args.frame_num is None:
args.frame_num = 81
args.base_seed = args.base_seed if args.base_seed >= 0 else random.randint(
0, sys.maxsize)
# Size check
assert args.size in SUPPORTED_SIZES[
args.model_name], f"Unsupport size {args.size} for model name {args.model_name}, supported sizes are: {', '.join(SUPPORTED_SIZES[args.model_name])}"
return args
def get_parser():
parser = argparse.ArgumentParser(
description="Generate a image or video from a text prompt or image using Wan"
)
parser.add_argument(
"--model_name",
type=str,
default="vace-1.3B",
choices=list(WAN_CONFIGS.keys()),
help="The model name to run.")
parser.add_argument(
"--size",
type=str,
default="480p",
choices=list(SIZE_CONFIGS.keys()),
help="The area (width*height) of the generated video. For the I2V task, the aspect ratio of the output video will follow that of the input image."
)
parser.add_argument(
"--frame_num",
type=int,
default=81,
help="How many frames to sample from a image or video. The number should be 4n+1"
)
parser.add_argument(
"--ckpt_dir",
type=str,
default='models/Wan2.1-VACE-1.3B/',
help="The path to the checkpoint directory.")
parser.add_argument(
"--offload_model",
type=str2bool,
default=None,
help="Whether to offload the model to CPU after each model forward, reducing GPU memory usage."
)
parser.add_argument(
"--ulysses_size",
type=int,
default=1,
help="The size of the ulysses parallelism in DiT.")
parser.add_argument(
"--ring_size",
type=int,
default=1,
help="The size of the ring attention parallelism in DiT.")
parser.add_argument(
"--t5_fsdp",
action="store_true",
default=False,
help="Whether to use FSDP for T5.")
parser.add_argument(
"--t5_cpu",
action="store_true",
default=False,
help="Whether to place T5 model on CPU.")
parser.add_argument(
"--dit_fsdp",
action="store_true",
default=False,
help="Whether to use FSDP for DiT.")
parser.add_argument(
"--save_dir",
type=str,
default=None,
help="The file to save the generated image or video to.")
parser.add_argument(
"--save_file",
type=str,
default=None,
help="The file to save the generated image or video to.")
parser.add_argument(
"--src_video",
type=str,
default=None,
help="The file of the source video. Default None.")
parser.add_argument(
"--src_mask",
type=str,
default=None,
help="The file of the source mask. Default None.")
parser.add_argument(
"--src_ref_images",
type=str,
default=None,
help="The file list of the source reference images. Separated by ','. Default None.")
parser.add_argument(
"--prompt",
type=str,
default=None,
help="The prompt to generate the image or video from.")
parser.add_argument(
"--use_prompt_extend",
default='plain',
choices=['plain', 'wan_zh', 'wan_en', 'wan_zh_ds', 'wan_en_ds'],
help="Whether to use prompt extend.")
parser.add_argument(
"--base_seed",
type=int,
default=2025,
help="The seed to use for generating the image or video.")
parser.add_argument(
"--sample_solver",
type=str,
default='unipc',
choices=['unipc', 'dpm++'],
help="The solver used to sample.")
parser.add_argument(
"--sample_steps", type=int, default=None, help="The sampling steps.")
parser.add_argument(
"--sample_shift",
type=float,
default=None,
help="Sampling shift factor for flow matching schedulers.")
parser.add_argument(
"--sample_guide_scale",
type=float,
default=5.0,
help="Classifier free guidance scale.")
return parser
def _init_logging(rank):
# logging
if rank == 0:
# set format
logging.basicConfig(
level=logging.INFO,
format="[%(asctime)s] %(levelname)s: %(message)s",
handlers=[logging.StreamHandler(stream=sys.stdout)])
else:
logging.basicConfig(level=logging.ERROR)
def main(args):
args = argparse.Namespace(**args) if isinstance(args, dict) else args
args = validate_args(args)
rank = int(os.getenv("RANK", 0))
world_size = int(os.getenv("WORLD_SIZE", 1))
local_rank = int(os.getenv("LOCAL_RANK", 0))
device = local_rank
_init_logging(rank)
if args.offload_model is None:
args.offload_model = False if world_size > 1 else True
logging.info(
f"offload_model is not specified, set to {args.offload_model}.")
if world_size > 1:
torch.cuda.set_device(local_rank)
dist.init_process_group(
backend="nccl",
init_method="env://",
rank=rank,
world_size=world_size)
else:
assert not (
args.t5_fsdp or args.dit_fsdp
), f"t5_fsdp and dit_fsdp are not supported in non-distributed environments."
assert not (
args.ulysses_size > 1 or args.ring_size > 1
), f"context parallel are not supported in non-distributed environments."
if args.ulysses_size > 1 or args.ring_size > 1:
assert args.ulysses_size * args.ring_size == world_size, f"The number of ulysses_size and ring_size should be equal to the world size."
from xfuser.core.distributed import (initialize_model_parallel,
init_distributed_environment)
init_distributed_environment(
rank=dist.get_rank(), world_size=dist.get_world_size())
initialize_model_parallel(
sequence_parallel_degree=dist.get_world_size(),
ring_degree=args.ring_size,
ulysses_degree=args.ulysses_size,
)
if args.use_prompt_extend and args.use_prompt_extend != 'plain':
prompt_expander = get_annotator(config_type='prompt', config_task=args.use_prompt_extend, return_dict=False)
cfg = WAN_CONFIGS[args.model_name]
if args.ulysses_size > 1:
assert cfg.num_heads % args.ulysses_size == 0, f"`num_heads` must be divisible by `ulysses_size`."
logging.info(f"Generation job args: {args}")
logging.info(f"Generation model config: {cfg}")
if dist.is_initialized():
base_seed = [args.base_seed] if rank == 0 else [None]
dist.broadcast_object_list(base_seed, src=0)
args.base_seed = base_seed[0]
if args.prompt is None:
args.prompt = EXAMPLE_PROMPT[args.model_name]["prompt"]
args.src_video = EXAMPLE_PROMPT[args.model_name].get("src_video", None)
args.src_mask = EXAMPLE_PROMPT[args.model_name].get("src_mask", None)
args.src_ref_images = EXAMPLE_PROMPT[args.model_name].get("src_ref_images", None)
logging.info(f"Input prompt: {args.prompt}")
if args.use_prompt_extend and args.use_prompt_extend != 'plain':
logging.info("Extending prompt ...")
if rank == 0:
prompt = prompt_expander.forward(args.prompt)
logging.info(f"Prompt extended from '{args.prompt}' to '{prompt}'")
input_prompt = [prompt]
else:
input_prompt = [None]
if dist.is_initialized():
dist.broadcast_object_list(input_prompt, src=0)
args.prompt = input_prompt[0]
logging.info(f"Extended prompt: {args.prompt}")
logging.info("Creating WanT2V pipeline.")
wan_vace = WanVace(
config=cfg,
checkpoint_dir=args.ckpt_dir,
device_id=device,
rank=rank,
t5_fsdp=args.t5_fsdp,
dit_fsdp=args.dit_fsdp,
use_usp=(args.ulysses_size > 1 or args.ring_size > 1),
t5_cpu=args.t5_cpu,
)
src_video, src_mask, src_ref_images = wan_vace.prepare_source([args.src_video],
[args.src_mask],
[None if args.src_ref_images is None else args.src_ref_images.split(',')],
args.frame_num, SIZE_CONFIGS[args.size], device)
logging.info(f"Generating video...")
video = wan_vace.generate(
args.prompt,
src_video,
src_mask,
src_ref_images,
size=SIZE_CONFIGS[args.size],
frame_num=args.frame_num,
shift=args.sample_shift,
sample_solver=args.sample_solver,
sampling_steps=args.sample_steps,
guide_scale=args.sample_guide_scale,
seed=args.base_seed,
offload_model=args.offload_model)
ret_data = {}
if rank == 0:
if args.save_dir is None:
save_dir = os.path.join('results', args.model_name, time.strftime('%Y-%m-%d-%H-%M-%S', time.localtime(time.time())))
else:
save_dir = args.save_dir
if not os.path.exists(save_dir):
os.makedirs(save_dir)
if args.save_file is not None:
save_file = args.save_file
else:
save_file = os.path.join(save_dir, 'out_video.mp4')
cache_video(
tensor=video[None],
save_file=save_file,
fps=cfg.sample_fps,
nrow=1,
normalize=True,
value_range=(-1, 1))
logging.info(f"Saving generated video to {save_file}")
ret_data['out_video'] = save_file
save_file = os.path.join(save_dir, 'src_video.mp4')
cache_video(
tensor=src_video[0][None],
save_file=save_file,
fps=cfg.sample_fps,
nrow=1,
normalize=True,
value_range=(-1, 1))
logging.info(f"Saving src_video to {save_file}")
ret_data['src_video'] = save_file
save_file = os.path.join(save_dir, 'src_mask.mp4')
cache_video(
tensor=src_mask[0][None],
save_file=save_file,
fps=cfg.sample_fps,
nrow=1,
normalize=True,
value_range=(0, 1))
logging.info(f"Saving src_mask to {save_file}")
ret_data['src_mask'] = save_file
if src_ref_images[0] is not None:
for i, ref_img in enumerate(src_ref_images[0]):
save_file = os.path.join(save_dir, f'src_ref_image_{i}.png')
cache_image(
tensor=ref_img[:, 0, ...],
save_file=save_file,
nrow=1,
normalize=True,
value_range=(-1, 1))
logging.info(f"Saving src_ref_image_{i} to {save_file}")
ret_data[f'src_ref_image_{i}'] = save_file
logging.info("Finished.")
return ret_data
if __name__ == "__main__":
args = get_parser().parse_args()
main(args)