Spaces:
Sleeping
Sleeping
# -*- coding: utf-8 -*- | |
# Copyright (c) Alibaba, Inc. and its affiliates. | |
import os | |
import shutil | |
import numpy as np | |
import torch | |
from scipy import ndimage | |
from .utils import convert_to_numpy, read_video_one_frame, single_mask_to_rle, single_rle_to_mask, single_mask_to_xyxy | |
class SAM2ImageAnnotator: | |
def __init__(self, cfg, device=None): | |
self.task_type = cfg.get('TASK_TYPE', 'input_box') | |
self.return_mask = cfg.get('RETURN_MASK', False) | |
try: | |
from sam2.build_sam import build_sam2 | |
from sam2.sam2_image_predictor import SAM2ImagePredictor | |
except: | |
import warnings | |
warnings.warn("please pip install sam2 package, or you can refer to models/VACE-Annotators/sam2/SAM_2-1.0-cp310-cp310-linux_x86_64.whl") | |
config_path = cfg['CONFIG_PATH'] | |
local_config_path = os.path.join(*config_path.rsplit('/')[-3:]) | |
if not os.path.exists(local_config_path): # TODO | |
os.makedirs(os.path.dirname(local_config_path), exist_ok=True) | |
shutil.copy(config_path, local_config_path) | |
pretrained_model = cfg['PRETRAINED_MODEL'] | |
sam2_model = build_sam2(local_config_path, pretrained_model) | |
self.predictor = SAM2ImagePredictor(sam2_model) | |
self.predictor.fill_hole_area = 0 | |
def forward(self, | |
image, | |
input_box=None, | |
mask=None, | |
task_type=None, | |
return_mask=None): | |
task_type = task_type if task_type is not None else self.task_type | |
return_mask = return_mask if return_mask is not None else self.return_mask | |
mask = convert_to_numpy(mask) if mask is not None else None | |
if task_type == 'mask_point': | |
if len(mask.shape) == 3: | |
scribble = mask.transpose(2, 1, 0)[0] | |
else: | |
scribble = mask.transpose(1, 0) # (H, W) -> (W, H) | |
labeled_array, num_features = ndimage.label(scribble >= 255) | |
centers = ndimage.center_of_mass(scribble, labeled_array, | |
range(1, num_features + 1)) | |
point_coords = np.array(centers) | |
point_labels = np.array([1] * len(centers)) | |
sample = { | |
'point_coords': point_coords, | |
'point_labels': point_labels | |
} | |
elif task_type == 'mask_box': | |
if len(mask.shape) == 3: | |
scribble = mask.transpose(2, 1, 0)[0] | |
else: | |
scribble = mask.transpose(1, 0) # (H, W) -> (W, H) | |
labeled_array, num_features = ndimage.label(scribble >= 255) | |
centers = ndimage.center_of_mass(scribble, labeled_array, | |
range(1, num_features + 1)) | |
centers = np.array(centers) | |
# (x1, y1, x2, y2) | |
x_min = centers[:, 0].min() | |
x_max = centers[:, 0].max() | |
y_min = centers[:, 1].min() | |
y_max = centers[:, 1].max() | |
bbox = np.array([x_min, y_min, x_max, y_max]) | |
sample = {'box': bbox} | |
elif task_type == 'input_box': | |
if isinstance(input_box, list): | |
input_box = np.array(input_box) | |
sample = {'box': input_box} | |
elif task_type == 'mask': | |
sample = {'mask_input': mask[None, :, :]} | |
else: | |
raise NotImplementedError | |
self.predictor.set_image(image) | |
masks, scores, logits = self.predictor.predict( | |
multimask_output=False, | |
**sample | |
) | |
sorted_ind = np.argsort(scores)[::-1] | |
masks = masks[sorted_ind] | |
scores = scores[sorted_ind] | |
logits = logits[sorted_ind] | |
if return_mask: | |
return masks[0] | |
else: | |
ret_data = { | |
"masks": masks, | |
"scores": scores, | |
"logits": logits | |
} | |
return ret_data | |
class SAM2VideoAnnotator: | |
def __init__(self, cfg, device=None): | |
self.task_type = cfg.get('TASK_TYPE', 'input_box') | |
try: | |
from sam2.build_sam import build_sam2_video_predictor | |
except: | |
import warnings | |
warnings.warn("please pip install sam2 package, or you can refer to models/VACE-Annotators/sam2/SAM_2-1.0-cp310-cp310-linux_x86_64.whl") | |
config_path = cfg['CONFIG_PATH'] | |
local_config_path = os.path.join(*config_path.rsplit('/')[-3:]) | |
if not os.path.exists(local_config_path): # TODO | |
os.makedirs(os.path.dirname(local_config_path), exist_ok=True) | |
shutil.copy(config_path, local_config_path) | |
pretrained_model = cfg['PRETRAINED_MODEL'] | |
self.video_predictor = build_sam2_video_predictor(local_config_path, pretrained_model) | |
self.video_predictor.fill_hole_area = 0 | |
def forward(self, | |
video, | |
input_box=None, | |
mask=None, | |
task_type=None): | |
task_type = task_type if task_type is not None else self.task_type | |
mask = convert_to_numpy(mask) if mask is not None else None | |
if task_type == 'mask_point': | |
if len(mask.shape) == 3: | |
scribble = mask.transpose(2, 1, 0)[0] | |
else: | |
scribble = mask.transpose(1, 0) # (H, W) -> (W, H) | |
labeled_array, num_features = ndimage.label(scribble >= 255) | |
centers = ndimage.center_of_mass(scribble, labeled_array, | |
range(1, num_features + 1)) | |
point_coords = np.array(centers) | |
point_labels = np.array([1] * len(centers)) | |
sample = { | |
'points': point_coords, | |
'labels': point_labels | |
} | |
elif task_type == 'mask_box': | |
if len(mask.shape) == 3: | |
scribble = mask.transpose(2, 1, 0)[0] | |
else: | |
scribble = mask.transpose(1, 0) # (H, W) -> (W, H) | |
labeled_array, num_features = ndimage.label(scribble >= 255) | |
centers = ndimage.center_of_mass(scribble, labeled_array, | |
range(1, num_features + 1)) | |
centers = np.array(centers) | |
# (x1, y1, x2, y2) | |
x_min = centers[:, 0].min() | |
x_max = centers[:, 0].max() | |
y_min = centers[:, 1].min() | |
y_max = centers[:, 1].max() | |
bbox = np.array([x_min, y_min, x_max, y_max]) | |
sample = {'box': bbox} | |
elif task_type == 'input_box': | |
if isinstance(input_box, list): | |
input_box = np.array(input_box) | |
sample = {'box': input_box} | |
elif task_type == 'mask': | |
sample = {'mask': mask} | |
else: | |
raise NotImplementedError | |
ann_frame_idx = 0 | |
object_id = 0 | |
with (torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16)): | |
inference_state = self.video_predictor.init_state(video_path=video) | |
if task_type in ['mask_point', 'mask_box', 'input_box']: | |
_, out_obj_ids, out_mask_logits = self.video_predictor.add_new_points_or_box( | |
inference_state=inference_state, | |
frame_idx=ann_frame_idx, | |
obj_id=object_id, | |
**sample | |
) | |
elif task_type in ['mask']: | |
_, out_obj_ids, out_mask_logits = self.video_predictor.add_new_mask( | |
inference_state=inference_state, | |
frame_idx=ann_frame_idx, | |
obj_id=object_id, | |
**sample | |
) | |
else: | |
raise NotImplementedError | |
video_segments = {} # video_segments contains the per-frame segmentation results | |
for out_frame_idx, out_obj_ids, out_mask_logits in self.video_predictor.propagate_in_video(inference_state): | |
frame_segments = {} | |
for i, out_obj_id in enumerate(out_obj_ids): | |
mask = (out_mask_logits[i] > 0.0).cpu().numpy().squeeze(0) | |
frame_segments[out_obj_id] = { | |
"mask": single_mask_to_rle(mask), | |
"mask_area": int(mask.sum()), | |
"mask_box": single_mask_to_xyxy(mask), | |
} | |
video_segments[out_frame_idx] = frame_segments | |
ret_data = { | |
"annotations": video_segments | |
} | |
return ret_data | |
class SAM2SalientVideoAnnotator: | |
def __init__(self, cfg, device=None): | |
from .salient import SalientAnnotator | |
from .sam2 import SAM2VideoAnnotator | |
self.salient_model = SalientAnnotator(cfg['SALIENT'], device=device) | |
self.sam2_model = SAM2VideoAnnotator(cfg['SAM2'], device=device) | |
def forward(self, video, image=None): | |
if image is None: | |
image = read_video_one_frame(video) | |
else: | |
image = convert_to_numpy(image) | |
salient_res = self.salient_model.forward(image) | |
sam2_res = self.sam2_model.forward(video=video, mask=salient_res, task_type='mask') | |
return sam2_res | |
class SAM2GDINOVideoAnnotator: | |
def __init__(self, cfg, device=None): | |
from .gdino import GDINOAnnotator | |
from .sam2 import SAM2VideoAnnotator | |
self.gdino_model = GDINOAnnotator(cfg['GDINO'], device=device) | |
self.sam2_model = SAM2VideoAnnotator(cfg['SAM2'], device=device) | |
def forward(self, video, image=None, classes=None, caption=None): | |
if image is None: | |
image = read_video_one_frame(video) | |
else: | |
image = convert_to_numpy(image) | |
if classes is not None: | |
gdino_res = self.gdino_model.forward(image, classes=classes) | |
else: | |
gdino_res = self.gdino_model.forward(image, caption=caption) | |
if 'boxes' in gdino_res and len(gdino_res['boxes']) > 0: | |
bboxes = gdino_res['boxes'][0] | |
else: | |
raise ValueError("Unable to find the corresponding boxes") | |
sam2_res = self.sam2_model.forward(video=video, input_box=bboxes, task_type='input_box') | |
return sam2_res |