Spaces:
Sleeping
Sleeping
# -*- coding: utf-8 -*- | |
# Copyright (c) Alibaba, Inc. and its affiliates. | |
import cv2 | |
import torch | |
import numpy as np | |
from torchvision.transforms import Normalize, Compose, Resize, ToTensor | |
from .utils import convert_to_pil | |
class RAMAnnotator: | |
def __init__(self, cfg, device=None): | |
try: | |
from ram.models import ram_plus, ram, tag2text | |
from ram import inference_ram | |
except: | |
import warnings | |
warnings.warn("please pip install ram package, or you can refer to models/VACE-Annotators/ram/ram-0.0.1-py3-none-any.whl") | |
delete_tag_index = [] | |
image_size = cfg.get('IMAGE_SIZE', 384) | |
ram_tokenizer_path = cfg['TOKENIZER_PATH'] | |
ram_checkpoint_path = cfg['PRETRAINED_MODEL'] | |
ram_type = cfg.get('RAM_TYPE', 'swin_l') | |
self.return_lang = cfg.get('RETURN_LANG', ['en']) # ['en', 'zh'] | |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") if device is None else device | |
self.model = ram_plus(pretrained=ram_checkpoint_path, image_size=image_size, vit=ram_type, | |
text_encoder_type=ram_tokenizer_path, delete_tag_index=delete_tag_index).eval().to(self.device) | |
self.ram_transform = Compose([ | |
Resize((image_size, image_size)), | |
ToTensor(), | |
Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) | |
]) | |
self.inference_ram = inference_ram | |
def forward(self, image): | |
image = convert_to_pil(image) | |
image_ann_trans = self.ram_transform(image).unsqueeze(0).to(self.device) | |
tags_e, tags_c = self.inference_ram(image_ann_trans, self.model) | |
tags_e_list = [tag.strip() for tag in tags_e.strip().split("|")] | |
tags_c_list = [tag.strip() for tag in tags_c.strip().split("|")] | |
if len(self.return_lang) == 1 and 'en' in self.return_lang: | |
return tags_e_list | |
elif len(self.return_lang) == 1 and 'zh' in self.return_lang: | |
return tags_c_list | |
else: | |
return { | |
"tags_e": tags_e_list, | |
"tags_c": tags_c_list | |
} | |