Spaces:
Sleeping
Sleeping
# -*- coding: utf-8 -*- | |
# Copyright (c) Alibaba, Inc. and its affiliates. | |
import os | |
import cv2 | |
import torch | |
import numpy as np | |
from .dwpose import util | |
from .dwpose.wholebody import Wholebody, HWC3, resize_image | |
from .utils import convert_to_numpy | |
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE" | |
def draw_pose(pose, H, W, use_hand=False, use_body=False, use_face=False): | |
bodies = pose['bodies'] | |
faces = pose['faces'] | |
hands = pose['hands'] | |
candidate = bodies['candidate'] | |
subset = bodies['subset'] | |
canvas = np.zeros(shape=(H, W, 3), dtype=np.uint8) | |
if use_body: | |
canvas = util.draw_bodypose(canvas, candidate, subset) | |
if use_hand: | |
canvas = util.draw_handpose(canvas, hands) | |
if use_face: | |
canvas = util.draw_facepose(canvas, faces) | |
return canvas | |
class PoseAnnotator: | |
def __init__(self, cfg, device=None): | |
onnx_det = cfg['DETECTION_MODEL'] | |
onnx_pose = cfg['POSE_MODEL'] | |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") if device is None else device | |
self.pose_estimation = Wholebody(onnx_det, onnx_pose, device=self.device) | |
self.resize_size = cfg.get("RESIZE_SIZE", 1024) | |
self.use_body = cfg.get('USE_BODY', True) | |
self.use_face = cfg.get('USE_FACE', True) | |
self.use_hand = cfg.get('USE_HAND', True) | |
def forward(self, image): | |
image = convert_to_numpy(image) | |
input_image = HWC3(image[..., ::-1]) | |
return self.process(resize_image(input_image, self.resize_size), image.shape[:2]) | |
def process(self, ori_img, ori_shape): | |
ori_h, ori_w = ori_shape | |
ori_img = ori_img.copy() | |
H, W, C = ori_img.shape | |
with torch.no_grad(): | |
candidate, subset, det_result = self.pose_estimation(ori_img) | |
nums, keys, locs = candidate.shape | |
candidate[..., 0] /= float(W) | |
candidate[..., 1] /= float(H) | |
body = candidate[:, :18].copy() | |
body = body.reshape(nums * 18, locs) | |
score = subset[:, :18] | |
for i in range(len(score)): | |
for j in range(len(score[i])): | |
if score[i][j] > 0.3: | |
score[i][j] = int(18 * i + j) | |
else: | |
score[i][j] = -1 | |
un_visible = subset < 0.3 | |
candidate[un_visible] = -1 | |
foot = candidate[:, 18:24] | |
faces = candidate[:, 24:92] | |
hands = candidate[:, 92:113] | |
hands = np.vstack([hands, candidate[:, 113:]]) | |
bodies = dict(candidate=body, subset=score) | |
pose = dict(bodies=bodies, hands=hands, faces=faces) | |
ret_data = {} | |
if self.use_body: | |
detected_map_body = draw_pose(pose, H, W, use_body=True) | |
detected_map_body = cv2.resize(detected_map_body[..., ::-1], (ori_w, ori_h), | |
interpolation=cv2.INTER_LANCZOS4 if ori_h * ori_w > H * W else cv2.INTER_AREA) | |
ret_data["detected_map_body"] = detected_map_body | |
if self.use_face: | |
detected_map_face = draw_pose(pose, H, W, use_face=True) | |
detected_map_face = cv2.resize(detected_map_face[..., ::-1], (ori_w, ori_h), | |
interpolation=cv2.INTER_LANCZOS4 if ori_h * ori_w > H * W else cv2.INTER_AREA) | |
ret_data["detected_map_face"] = detected_map_face | |
if self.use_body and self.use_face: | |
detected_map_bodyface = draw_pose(pose, H, W, use_body=True, use_face=True) | |
detected_map_bodyface = cv2.resize(detected_map_bodyface[..., ::-1], (ori_w, ori_h), | |
interpolation=cv2.INTER_LANCZOS4 if ori_h * ori_w > H * W else cv2.INTER_AREA) | |
ret_data["detected_map_bodyface"] = detected_map_bodyface | |
if self.use_hand and self.use_body and self.use_face: | |
detected_map_handbodyface = draw_pose(pose, H, W, use_hand=True, use_body=True, use_face=True) | |
detected_map_handbodyface = cv2.resize(detected_map_handbodyface[..., ::-1], (ori_w, ori_h), | |
interpolation=cv2.INTER_LANCZOS4 if ori_h * ori_w > H * W else cv2.INTER_AREA) | |
ret_data["detected_map_handbodyface"] = detected_map_handbodyface | |
# convert_size | |
if det_result.shape[0] > 0: | |
w_ratio, h_ratio = ori_w / W, ori_h / H | |
det_result[..., ::2] *= h_ratio | |
det_result[..., 1::2] *= w_ratio | |
det_result = det_result.astype(np.int32) | |
return ret_data, det_result | |
class PoseBodyFaceAnnotator(PoseAnnotator): | |
def __init__(self, cfg, device=None): | |
super().__init__(cfg, device) | |
self.use_body, self.use_face, self.use_hand = True, True, False | |
def forward(self, image): | |
ret_data, det_result = super().forward(image) | |
return ret_data['detected_map_bodyface'] | |
class PoseBodyFaceVideoAnnotator(PoseBodyFaceAnnotator): | |
def forward(self, frames): | |
ret_frames = [] | |
for frame in frames: | |
anno_frame = super().forward(np.array(frame)) | |
ret_frames.append(anno_frame) | |
return ret_frames | |
class PoseBodyAnnotator(PoseAnnotator): | |
def __init__(self, cfg, device=None): | |
super().__init__(cfg, device) | |
self.use_body, self.use_face, self.use_hand = True, False, False | |
def forward(self, image): | |
ret_data, det_result = super().forward(image) | |
return ret_data['detected_map_body'] | |
class PoseBodyVideoAnnotator(PoseBodyAnnotator): | |
def forward(self, frames): | |
ret_frames = [] | |
for frame in frames: | |
anno_frame = super().forward(np.array(frame)) | |
ret_frames.append(anno_frame) | |
return ret_frames |