Spaces:
Sleeping
Sleeping
# -*- coding: utf-8 -*- | |
# Copyright (c) Alibaba, Inc. and its affiliates. | |
import numpy as np | |
import torch | |
from einops import rearrange | |
from .utils import convert_to_numpy, resize_image, resize_image_ori | |
class DepthAnnotator: | |
def __init__(self, cfg, device=None): | |
from .midas.api import MiDaSInference | |
pretrained_model = cfg['PRETRAINED_MODEL'] | |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") if device is None else device | |
self.model = MiDaSInference(model_type='dpt_hybrid', model_path=pretrained_model).to(self.device) | |
self.a = cfg.get('A', np.pi * 2.0) | |
self.bg_th = cfg.get('BG_TH', 0.1) | |
def forward(self, image): | |
image = convert_to_numpy(image) | |
image_depth = image | |
h, w, c = image.shape | |
image_depth, k = resize_image(image_depth, | |
1024 if min(h, w) > 1024 else min(h, w)) | |
image_depth = torch.from_numpy(image_depth).float().to(self.device) | |
image_depth = image_depth / 127.5 - 1.0 | |
image_depth = rearrange(image_depth, 'h w c -> 1 c h w') | |
depth = self.model(image_depth)[0] | |
depth_pt = depth.clone() | |
depth_pt -= torch.min(depth_pt) | |
depth_pt /= torch.max(depth_pt) | |
depth_pt = depth_pt.cpu().numpy() | |
depth_image = (depth_pt * 255.0).clip(0, 255).astype(np.uint8) | |
depth_image = depth_image[..., None].repeat(3, 2) | |
depth_image = resize_image_ori(h, w, depth_image, k) | |
return depth_image | |
class DepthVideoAnnotator(DepthAnnotator): | |
def forward(self, frames): | |
ret_frames = [] | |
for frame in frames: | |
anno_frame = super().forward(np.array(frame)) | |
ret_frames.append(anno_frame) | |
return ret_frames | |
class DepthV2Annotator: | |
def __init__(self, cfg, device=None): | |
from .depth_anything_v2.dpt import DepthAnythingV2 | |
pretrained_model = cfg['PRETRAINED_MODEL'] | |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") if device is None else device | |
self.model = DepthAnythingV2(encoder='vitl', features=256, out_channels=[256, 512, 1024, 1024]).to(self.device) | |
self.model.load_state_dict( | |
torch.load( | |
pretrained_model, | |
map_location=self.device | |
) | |
) | |
self.model.eval() | |
def forward(self, image): | |
image = convert_to_numpy(image) | |
depth = self.model.infer_image(image) | |
depth_pt = depth.copy() | |
depth_pt -= np.min(depth_pt) | |
depth_pt /= np.max(depth_pt) | |
depth_image = (depth_pt * 255.0).clip(0, 255).astype(np.uint8) | |
depth_image = depth_image[..., np.newaxis] | |
depth_image = np.repeat(depth_image, 3, axis=2) | |
return depth_image | |
class DepthV2VideoAnnotator(DepthV2Annotator): | |
def forward(self, frames): | |
ret_frames = [] | |
for frame in frames: | |
anno_frame = super().forward(np.array(frame)) | |
ret_frames.append(anno_frame) | |
return ret_frames | |