File size: 5,408 Bytes
6aef5ba
 
 
 
 
 
 
 
 
 
 
b2107ed
 
6aef5ba
 
f524066
6aef5ba
 
 
 
 
e1c09af
 
 
 
 
 
 
 
 
 
 
 
 
f4f936c
 
b2107ed
6aef5ba
 
 
 
 
92c5896
c1d97d2
6aef5ba
 
92c5896
 
6aef5ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a977ff
 
 
 
6aef5ba
4a977ff
 
 
 
 
 
 
 
 
 
 
 
 
dea35d2
4d74f56
f4f936c
4d74f56
 
 
 
 
 
92c5896
 
 
 
4a977ff
f4f936c
4a977ff
 
 
 
 
 
 
 
 
2ff3681
 
6aef5ba
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
"""
Copyright (c) Meta Platforms, Inc. and affiliates.
All rights reserved.

This source code is licensed under the license found in the
LICENSE file in the root directory of this source tree.
"""

from tempfile import NamedTemporaryFile
import torch
import gradio as gr
from scipy.io.wavfile import write

from audiocraft.models import MusicGen

import os
from audiocraft.data.audio import audio_write


MODEL = None

def split_process(audio, chosen_out_track):
    os.makedirs("out", exist_ok=True)
    write('test.wav', audio[0], audio[1])
    os.system("python3 -m demucs.separate -n mdx_extra_q -d cpu test.wav -o out")
    #return "./out/mdx_extra_q/test/vocals.wav","./out/mdx_extra_q/test/bass.wav","./out/mdx_extra_q/test/drums.wav","./out/mdx_extra_q/test/other.wav"
    if chosen_out_track == "vocals":
        return "./out/mdx_extra_q/test/vocals.wav"
    elif chosen_out_track == "bass":
        return "./out/mdx_extra_q/test/bass.wav"
    elif chosen_out_track == "drums":
        return "./out/mdx_extra_q/test/drums.wav"
    elif chosen_out_track == "other":
        return "./out/mdx_extra_q/test/other.wav"
    elif chosen_out_track == "all-in":
        return "test.wav"
    
def load_model(version):
    print("Loading model", version)
    return MusicGen.get_pretrained(version)


def predict(music_prompt, melody, duration, model):
    text = music_prompt
    global MODEL
    topk = int(250)
    if MODEL is None or MODEL.name != model:
        MODEL = load_model(model)

    if duration > MODEL.lm.cfg.dataset.segment_duration:
        raise gr.Error("MusicGen currently supports durations of up to 30 seconds!")
    MODEL.set_generation_params(
        use_sampling=True,
        top_k=250,
        top_p=0,
        temperature=1.0,
        cfg_coef=3.0,
        duration=duration,
    )

    if melody:
        sr, melody = melody[0], torch.from_numpy(melody[1]).to(MODEL.device).float().t().unsqueeze(0)
        print(melody.shape)
        if melody.dim() == 2:
            melody = melody[None]
        melody = melody[..., :int(sr * MODEL.lm.cfg.dataset.segment_duration)]
        output = MODEL.generate_with_chroma(
            descriptions=[text],
            melody_wavs=melody,
            melody_sample_rate=sr,
            progress=False
        )
    else:
        output = MODEL.generate(descriptions=[text], progress=False)

    output = output.detach().cpu().float()[0]
    with NamedTemporaryFile("wb", suffix=".wav", delete=False) as file:
        audio_write(file.name, output, MODEL.sample_rate, strategy="loudness", add_suffix=False)
        #waveform_video = gr.make_waveform(file.name)
    return file.name

css="""
#col-container {max-width: 510px; margin-left: auto; margin-right: auto;}
a {text-decoration-line: underline; font-weight: 600;}
"""

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown(
            """
            # Split Audio to MusicGen
            Upload an audio file, split audio tracks with Demucs, choose a track as conditional sound for MusicGen, get a remix ! 
            <br/>
            <a href="https://huggingface.co/spaces/fffiloni/SplitTrack2MusicGen?duplicate=true" style="display: inline-block;margin-top: .5em;margin-right: .25em;" target="_blank">
            <img style="margin-bottom: 0em;display: inline;margin-top: -.25em;" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
            for longer sequences, more control and no queue.</p>
            """
        )
            
        with gr.Column():
            uploaded_sound = gr.Audio(type="numpy", label="Input", source="upload")
            chosen_track = gr.Radio(["vocals", "bass", "drums", "other", "all-in"], label="Track", info="Which track from your audio do you want to mashup ?", value="vocals")
            load_sound_btn = gr.Button('Load your sound')
            #split_vocals = gr.Audio(type="filepath", label="Vocals")
            #split_bass = gr.Audio(type="filepath", label="Bass")
            #split_drums = gr.Audio(type="filepath", label="Drums")
            #split_others = gr.Audio(type="filepath", label="Other")
        with gr.Row():
            music_prompt = gr.Textbox(label="Musical Prompt", info="Describe what kind of music you wish for", interactive=True)
            melody = gr.Audio(source="upload", type="numpy", label="Track Condition (from previous step)", interactive=False)
        with gr.Row():
            model = gr.Radio(["melody", "medium", "small", "large"], label="Model", value="melody", interactive=True)
        with gr.Row():
            duration = gr.Slider(minimum=1, maximum=30, value=10, step=1, label="Generated Music Duration", interactive=True)
        with gr.Row():
            submit = gr.Button("Submit")
        #with gr.Row():
        #   topk = gr.Number(label="Top-k", value=250, interactive=True)
        #   topp = gr.Number(label="Top-p", value=0, interactive=True)
        #   temperature = gr.Number(label="Temperature", value=1.0, interactive=True)
        #   cfg_coef = gr.Number(label="Classifier Free Guidance", value=3.0, interactive=True)
        
        output = gr.Audio(label="Generated Music")
    load_sound_btn.click(split_process, inputs=[uploaded_sound, chosen_track], outputs=[melody])
    submit.click(predict, inputs=[music_prompt, melody, duration, model], outputs=[output])
    

demo.queue(max_size=32).launch()